			OCR RECOGNISING ACH	MUM HIS CIOULY CON
OXFORD CAME FREE-STANDIN Advanced Leve	BRIDGE AND RSA E G MATHEMATICS G I	XAMINATIONS PUALIFICATION		
ADDITIONAL	MATHEMATICS		6993	
Summer 2003				
Friday	13 JUNE 2003	Morning	2 hours	
Additional materials: Answer booklet Graph paper		 .		

TIME 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all questions.
- You are permitted to use a scientific or graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- · Final answers should be given correct to three significant figures where appropriate.
- The total number of marks for this paper is 100.

Section A

- 1 Solve simultaneously the equations y = x + 6 and $y = x^2 x + 3$.
- 2 (i) Show that there is a stationary point at (1,9) on the curve $y = x^3 6x^2 + 9x + 5$ and determine the nature of this stationary point. [5]
 - (ii) Find the coordinates of the other stationary point and hence sketch the curve. [2]
- 3 The gradient function of a curve is given by $\frac{dy}{dx} = 2 + 2x x^2$. Find the equation of the curve given that it passes through the point (3, 10). [4]
- 4 Find the four values of θ in the range $0^{\circ} \le \theta \le 360^{\circ}$ that satisfy the equation $\sin 2\theta = 0.5$. [4]
- 5 (i) By drawing suitable graphs on the same axes, indicate the region for which the following inequalities hold. You should shade the region which is **not** required.

$$3x + 4y \le 24$$

$$3x + y \le 15$$

$$x \ge 0$$

$$y \ge 0$$
[5]

www.mymathscloud.com

- (ii) Find the maximum value of 2x + y subject to these conditions. [2]
- 6 (i) Expand $(2 + x)^7$ in ascending powers of x up to and including the term in x^3 . [4]
 - (ii) Use your expansion with an appropriate value of x to find an approximate value of 1.99^7 . Give your answer to 4 decimal places.

Show your working clearly, giving the numerical value of each term.

[Just writing down the value of 1.99^7 from your calculator will earn no marks.] [3]

7 Use the given triangle to prove that, for $0^{\circ} < \theta < 90^{\circ}$, $1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$.

8 A pyramid ABCDV has a square, horizontal, base ABCD of side 6 cm. The vertex V is vertically above the centre of the base O. The pyramid has height 7 cm.

Find the angle that the sloping edge VA makes with the horizontal. [5]

- 9 The function f(x) is defined by $f(x) = x^3 + 2x^2 5x 6$.
 - (i) Show that when f(x) is divided by (x 3) the remainder is 24. [2]
 - (ii) Show that (x-2) is a factor of f(x). [1]
 - (iii) Hence solve the equation f(x) = 0.
- 10 A car, which is initially travelling at 20 m s^{-1} , accelerates uniformly at 1.2 m s^{-2} . Find
 - (i) the speed after 5 seconds, [2]
 - (ii) the distance travelled in this time.

6993 June 2003

[Turn over

[4]

[2]

www.mymainscioud.com

Section B

www.mymathscloud.com 11 The shaded region on the diagram shows a boat's sail. The units are metres and, referred to the axes shown, the coordinates of O and B are (0,0) and (1,2) respectively. OB is part of the curve $y = 3x - x^2$. The tangent to the curve at B meets the x-axis at A.

Find

(i)
$$\frac{dy}{dx}$$
 for the curve $y = 3x - x^2$, [2]

- (ii) the equation of the tangent at B, [3]
- (iii) the coordinates of the point A, [1]

[6]

- (iv) the area of the sail.
- 12 (a) A quality control officer inspects a large batch of electric light bulbs which are in packs of 8. He chooses a pack at random and tests all the bulbs to see if they are working. On this day 10% of the bulbs are faulty.

Find the probability that in the pack chosen

(i) none is faulty,	[2]
(ii) two or more are faulty.	[5]

(b) If the officer finds no faulty bulbs, he accepts the whole batch. If he finds two or more faulty bulbs he rejects the whole batch. If he finds one faulty bulb then he chooses a second pack at random and accepts the whole batch only if this second pack has no faulty bulbs.

Find the probability that the whole batch is accepted.	[5]
--	-----

- www.mymathscloud.com 13 There are 10 tonnes of potatoes in a large container. Bags of potatoes of nominal mass 5 kg are filled from this container. The potatoes are not all the same size and it is not possible to make the bags exactly 5 kg. [1 tonne = 1000 kg.]
 - (i) If all bags could be made with a mass of exactly 5 kg, how many bags would be filled from the container? [1]

The bags could be too light by up to $x \, kg$ or too heavy by up to $x \, kg$.

- (ii) State, in terms of x, the largest and smallest number of bags that can be filled from the container. [2]
- (iii) Given that the largest number of bags is 100 more than the smallest number of bags, write down an equation in x and show that it simplifies to $x^2 + 200x - 25 = 0$. [6]
- (iv) Solve this equation and hence work out the largest and smallest mass of a bag of potatoes.

[3]

14 At 1200 a ship is at a point A on a bearing of 040° from a lighthouse L and at a distance of 6 nautical miles.

The ship is moving on a bearing of 170° at 21 knots. [1 knot is a speed of 1 nautical mile per hour.]

C is the point where the ship is nearest to the lighthouse.

(i) Show that the angle $LAC = 50^{\circ}$. [1] (ii) Find the distance LC and the time when the ship is at the point C. [6] (iii) At what time is the ship on a bearing of 110° from the lighthouse? [5]

Mark Scheme

FSMQ Additional Mathematics

6993

Mark Scheme, June 2003

Section A

699 Sec	93 Additional Mathematics Summer 2003	\$	Solutions	WWW. INY MAINSCIOUS	10.00J
1	$x+6 = x^{2} - x + 3 \Rightarrow x^{2} - 2x - 3 = 0$ $\Rightarrow (x-3)(x+1) = 0 \Rightarrow (3, 9), (-1, 5)$ Alternatively: eliminate y giving $y^{2} - 14y + 45 = 0$	4	M1 A1 A1 A1	Or A1 for 3, -1 A1 for 9, 5	
2	(i) $\frac{dy}{dx} = 3x^2 - 12x + 9 = 0 \text{ when } x^2 - 4x + 3 = 0$ $\Rightarrow (x-3)(x-1) = 0 \Rightarrow x = 1 \Rightarrow y = 9$ $\frac{d^2 y}{dx^2} = 6x - 12 < 0 \text{ when } x = 1 \Rightarrow \text{ maximum}$ (Alternatively B1 B1 for +ve on left and -ve on right of stationary point.) (ii) Other stationary point is (3, 5) (ii) Other stationary point is (3, 5)	5 2 7	M1 Diff A1 getting 0 B1 getting 9 DM1 A1 B1 for other stationary point F1 for sketch (General shape)	Dep. On 1 st M1 Conforms to 2 nd stationary point.	
3	$\frac{dy}{dx} = 2 + 2x - x^2 \Rightarrow y = 2x + x^2 - \frac{x^3}{3} (+c)$ Through (3, 10) $\Rightarrow 6 + 9 - 9 + c = 10 \Rightarrow c = 4$ $\Rightarrow y = 2x + x^2 - \frac{x^3}{3} + 4$	4	M1 (ignore <i>c</i>) A1 all correct M1 for <i>c</i> F1	Increase in powers evident	
4	$\sin 2\theta = 0.5 \Rightarrow 2\theta = 30 \text{ and } 150$ and also $2\theta = 390$ and also $2\theta = 510$ $\Rightarrow \theta = 15, 75, 195, 255$	4	M1 Solving A1 for 15 F2,1 remaining 3, - 1 each error		

				my
				"Mym " Mar
_			1	athsclo
5	(i) $3x + 4y = 24$ 3x + y = 15 meet at (4, 3)	5	B1 B1 each line B1 B1 each shading B1 for (4,3)	Ignore $x \ge 0$, $y \ge 0$ Award this where used or seen
	(ii) Max value of $2x + y$ is 11	2	M1 F1 for 11	
		7		
6	(i) $(2+x)^7 = 2^7 + 7.2^6 x + 21.2^5 x^2 + 35.2^4 x^3 +$ = 128 + 448x + 672x ² + 560x ³ +	4	B1 powers (x and 2s) B1 coefficients B2 all terms, (B1 1 error)	
	(ii) Substitute $x = -0.01$ $\Rightarrow 1.99^7 = 128 - 4.48 + 0.0672 - 0.000560 +$ = 123.5866	3 7	M1 substitute F1 terms A1 final answer	0.01 or -0.01
7	L.H.S. = 1 + tan ² θ = 1 + $\frac{b^2}{a^2}$ = $\frac{a^2 + b^2}{a^2}$ = $\frac{c^2}{a^2}$ = $\frac{1}{\cos^2\theta}$ = R.H.S	3	B1 B1 B1	Starting with end equation B2 only
8	$AB = 6 \Rightarrow AC = 6\sqrt{2} \approx 8.485 \Rightarrow AO = 3\sqrt{2} \approx 4.243$ $\Rightarrow \tan \theta = \frac{7}{3\sqrt{2}} \approx 1.650 \Rightarrow \theta = 58.8^{\circ}$	5	M1 A1 B1 Correct angle M1 A1	Application of Pythagoras in ABC Must be angle in correct triangle
9	(i) $f(x) = x^3 + 2x^2 - 5x - 6 \Rightarrow f(3) = 27 + 18 - 15 - 6 = 24$	2	M1 A1	
	(ii) $f(2) = 8 + 8 - 10 - 6 = 0$	1	B1	
	(iii) $f(x) = (x-2)(x^2+4x+3) = (x-2)(x+1)(x+3)$ $\Rightarrow f(x)=0 \Rightarrow (x-2)(x+1)(x+3) = 0 \Rightarrow x = -3, -1, 2$	4 7	M1 A1 A1 A1	For each linear term. Or use of factor theorem.
10	(i) $v = u + at \implies v = 20 + 1.2 \times 5 = 26 \text{ms}^{-1}$	2	M1 A1	-1 max penalty for incorrect or
	(ii) $s = ut + \frac{1}{2}at^2 \Rightarrow s = 100 + 0.6 \times 25 = 115m$	2 4	M1 A1	missing units

Section B

				mm 1
Sect	tion B			.mymaths
11				
11	(i) $y = 3x - x^2 \Longrightarrow \frac{dy}{1} = 3 - 2x.$	2	M1 A1	
	(ii) When $x=1, g=1 \Rightarrow y-2=1(x-1) \Rightarrow y=x+1$	3	F1 M1 A1	
	(iii) When $y = 0$, $x = -1 \Rightarrow A(-1,0)$	1	F1	
	(iv) Area under curve = $\int_{0}^{1} (3x - x^{2}) dx$		M1	Must have correct
	$= \left[\frac{3x^2}{2} - \frac{x^3}{3}\right]_0^1 = \frac{3}{2} - \frac{1}{3} = \frac{7}{6} \text{ m}^2$		A1 A1	limits
	Area triangle = $\frac{1}{2} \cdot 2 \cdot 2 = 2$ m ²		F1	
	Total Area = $2 - \frac{7}{6} = \frac{5}{6} m^2$	6	M1 F1	
	0 0	12		
12	(a) (i) $\left(\frac{9}{10}\right)^8 = 0.430$	2	M1 A1	
	(ii) $1 - \left(\frac{9}{10}\right)^8 - 8 \cdot \left(\frac{9}{10}\right)^7 \left(\frac{1}{10}\right)$ = $1 - 0.4305 - 0.3826 = 0.187$	5	M1 (1 -) A1 (2 terms) B1 (powers) B1 (coeff) A1 (ans)	Alt: M1 other terms A1 7 terms B1 powers B1 coeffs
	(b) $(a)(i) + (a)(i) \times P(1 \text{ faulty})$ = 0.4305 + 0.4305 × 0.3826 = 0.595	5	F1 (1^{st} term) M1 F1 (2^{nd} term) M1(add) A1 (ans)	Their (a)(i) Mult of 2 terms
		12		figs

				my	STAN A
				W.Mym	12 13
13	(i) $\frac{10000}{5} = 2000$	1	B1	Special case: Allow	ths cloud
	(ii) $\frac{10000}{5 - x}$, $\frac{10000}{5 + x}$	2	B1 B1	and follow through.	COM
	(iii) $\frac{10000}{5 \cdot x} - \frac{10000}{5 + x} = 100$		M1 A1	Accept either order	
	$\Rightarrow 10000((5+x)-(5-x)) = 100(25-x^{2})$		M1 A2,1	(even if wrong way	
	$\Rightarrow x^2 + 200x - 25 = 0$	6	A1	round)	
	(iv) $\Rightarrow x = \frac{-200 \pm \sqrt{200^2 + 100}}{2} \approx 0.125$		M1 A1	Clearing fractions	
	\Rightarrow largest = 5.125, smallest 4.875	3	A1		
		12			
14	(i) Angle LAC = $40 + 10 = 50$	1	B1		
	(ii) $LC = 6\sin 50 = 4.596$		M1 A1		
	$AC = 6\cos 50 = 3.857$		A1		
	$\Rightarrow \text{Time} = \frac{3.857}{21} = 0.1837 \text{hrs} \approx 11 \text{mins}$		M1 A1		
	\Rightarrow 1211	6	F1		
	(iii) $\frac{AB}{\sin 70} = \frac{6}{\sin(180 - 70 - 50)}$		M1 A1		
	$\Rightarrow AB = 6 \times \frac{\sin 70}{\sin 60} \approx 6.510$		A1		
	$\Rightarrow \text{Time} = \frac{6.510}{21} = 0.31 \text{hrs} \approx 18.6 \text{mins}$ $\Rightarrow 1219$	5	M1 F1 (allow 19 mins)		
	Alt. (iii) Bearing = 110° , Angle ALC = 40° . If position is B then angle CLB = 30°			M1 A1 (for 30)	
	CB = LCTan30 = 2.65			A1	
	Time = $\frac{2.65}{21} \times 60 = 8 \min s$ 1211 + 8 = 1219	12		M1 F1	

Examiner's Report

Report on 6993. Additional Mathematics Summer 2003.

WWW. MYMathscloud.com This is the first year of this specification. It replaced the old Additional Mathematics syllabuses, 8645 (the old O&C "traditional paper" and 8647, the MEI Additional Mathematics syllabus) and was geared to the same sort of candidature. The regulations for an Advanced FSMQ, as stated clearly in the specification, is that the appropriate starting point is a good grade at Higher Tier. Many of the candidates had clearly started from here, and had found that the course did not challenge them in quite the same way. There were many high scores including some full marks which was most pleasing to see. However, it was equally clear that many candidates had not started from the appropriate place. Many candidates not only failed to demonstrate any understanding of the extension material but failed to demonstrate the sort of understanding of some Higher Tier topics. Centres are encouraged to seek advice, if necessary, to find the most appropriate course for their students.

Because it is the first year of this specification the comments below are rather more full than they might be; it is hoped that teachers will use this report to inform them of requirements and standards expected.

1 This is a typical case in point. The question required candidates top find the intersection of a curve and a line and this is a standard Higher Tier topic. As such it should have been a relatively easy start to the paper. Yet many failed to show any understanding of the basic algebraic skills required to make the substitution in order to obtain the quadratic to be solved. Some substituted for x, giving a quadratic in y. While this clearly results in the correct answer, it is rather more complicated to do. Many candidates failed to find the values of the other variable. Solving simultaneously means find the pairs (x, y) and is the same question as "find the coordinates" of the intersection of the curve and the line".

[(-1, 5), (3, 9)]

2 Many candidates failed to show that the stationary point was at (1, 9), demonstrating simply that there was a turning point when x = 1. The "nature" of the turning point was done by either the second derivative, the "direction" of the gradient around the turning point or, having established y =9 at the turning point to find values of y close either side of x = 1. This last method requires the verification of y = 9 when x = 1 which, as stated above, was often omitted.

The "sketch" was often rather too sloppy for the mark. Candidates are expected to show intercepts on the axes and the turning points for their mark.

[(ii) (3, 5)]

A simple integration question which was well answered; only a small minority of candidates 3 failed to calculate the constant of integration. A typical indication of an inappropriate entry was the candidate who took the "m" of y = mx + c to be $2 + 2x - x^2$, writing the equation as $y = (2 + 2x - x^2)x + c.$

$$[y = 2x + x^2 - \frac{x^3}{3} + 4]$$

4 Many students managed $2\theta = 30 \Rightarrow \theta = 15$, but failed to find the other roots. The information that there were four roots should have given a clue but a number of candidates ignored it! Rather more worrying were the candidates who wrote $\sin 2\theta = 0.5 \Rightarrow \sin \theta = 0.25 \Rightarrow \theta = 14.5^{\circ}$ or

even worse, $\sin 2\theta = 0.5 \Rightarrow \theta = \frac{0.5}{\sin 2} = \frac{0.5}{0.0349} = 14.32^{\circ}$

 $[15^0, 75^0, 195^0, 255^0]$

5 The first part of this question was, in general, well done, although some candidates were unable to draw the lines properly. The maximum value of 2x + y was not so well done; the good candidates realised that it occurred at the intersection while others found the value at all corners in order to deduce. For this short question in Section A it was not a requirement to justify that the point of intersection was indeed (4, 3) or that this was the point that maximised the objective function.

[(ii) 11 at (4, 3)]

6 The binomial expansion had not been covered by many; some tried to multiply it all out while others wrote incorrect algebra. When a numeric value is to be found "without use of the calculator" the values of all terms was expected to be seen. While no candidate simply wrote down the answer (which would have come from the calculator) many wrote down incorrect arithmetic (for instance all terms positive) and then the right answer. Candidates who are clever enough to take short cuts should remember to write down everything in situations like this.

[(i) $128 + 448x + 672x^2 + 560x^3 + \dots$ (ii) 123.5866]

7 This question was an A grade discriminator!! Those candidates who were able to do the question usually started with the equality given, manipulating both sides to give something that they knew to be true (i.e. Pythagoras) rather than start with one side of the identity and to manipulate to give the other side.

8 There were some surprising answers here! Many candidates got it right but by a very roundabout way. The intention was to find AO and then in the triangle VOA use the tan ratio to give the answer. Many did not do this. A common alternative seen was to find the hypotenuse by Pythagoras and then use the sin or cos ratio, thus involving an extra step. Another was to find AV and CV (deduced correctly to be equal) and then to apply the cosine formula on triangle AVC.

 $[58.8^{0}]$

9 This is a case where all working needs to be seen, even though it is very simple for the able candidate. Examiners need to see the substitution of x = 3 into the function to yield 24. Some did part (iii) by attempting to divide by (x - 2) while others found the other roots by trail and error. Examiners did not report seeing any candidate using the logic of trying only certain numbers due to the fact that the produce of the three roots had to be 6.

Some lost the last mark by factorising f(x) only without solving the equation f(x) = 0.

[(iii) x = 2, -1, -3]

10 Part (i) was often logically deduced without any clear statement of one of the standard formulae, but (ii) caused extra problems. Some effectively used $s = \frac{(u+v)}{2}t$ for each second to achieve the right answer. There was not much evidence that these formulae were well known. We expected to see the units given in these answers.

[(i) 26 ms⁻¹, (ii) 115m]

11 This question was often well done. The weaker candidates were able to differentiate the function to find the gradient function but then failed to obtain the equation of the tangent. The weakest, of course, were unable even to differentiate.

Because of the limits of each area the method of using $\int_{a}^{b} (y_1 - y_2) dx$ was clearly not appropriate.

We were surprised that so many integrated the equation of the tangent to finds the are under the line instead of seeing it as a triangle.

$$\left[(i) \quad \frac{dy}{dx} = 3 - 2x. \quad (ii) \quad y = x + 1 \quad (iii) \quad (-1,0) \quad (iv) \quad 2 - \frac{7}{6} = \frac{5}{6} \quad m^2 \right]$$

12 This was a standard binomial distribution question set in previous Additional Mathematics papers and many completed it well and with the minimum of fuss (though some lost a mark through not correcting answers to 3 significant figures as required by the rubric – some gave far too many and others approximated prematurely). The same proportion of candidates completing the question failed to involve the binomial coefficients. Many weak candidates misread the question and worked

on $\left(\frac{1}{8}\right)^{10}$ or similar, incorrect, terms.

[(i) 0.430, (ii) 0.187 (iii) 0.595]

13 Unfortunately many candidates did not know the connection between tonnes and kilograms though compensatory marks were available. In spite of this many were able to set up the equation $\frac{10000}{5-x} - \frac{10000}{5+x} = 100$. The main problem arose over the algebraic manipulation resulting in the quadratic equation $x^2 + 230x - 25 = 0$. Needless to say, incorrect algebra leading to the correct answer resulted in no marks! Candidates need to be aware that examiners cannot be fooled, for when the answer is given we look very carefully at all the steps that lead to it. Some were able to re-enter the question and simply solve the quadratic equation.

[(i)2000, (ii)
$$\frac{10000}{5-x}$$
, $\frac{10000}{5+x}$, (iv) 5.125 kg, 4.875 kg]

14 Justification of the angle of 50^{0} was often not done and lengths were sometimes corrected too soon. Unfortunately, some candidates did not read the question properly and, having worked out LC as required, then used that length to work out the "time" rather than understand that, although it was not asked for, it was the length AC that was required. Two methods were seen for the last part; some worked out the "extra" bit, getting an angle of 30^{0} in a right-angled triangle and adding the time on, while others started from the beginning again with a triangle that required the use of the sine rule.

[(ii) LC = 4.596 km, time = 1211 (iii) 1219]

TIME 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all questions.
- You are permitted to use a scientific or graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given correct to three significant figures where appropriate.
- The total number of marks for this paper is 100.

Section A

- 1 The vertices of a quadrilateral are A(-2, 0), B(2, 2), C(7, -3) and D(0, -4).
 - (i) Calculate the gradients of the diagonals AC and BD and state a geometrical fact about these lines.
 [3]
 - (ii) Show that the mid-point of BD lies on AC.
- 2 The curve shown is part of the graph of $y = 4 x^2$.

Calculate the area of the shaded region between this curve and the x-axis, giving your answer as an exact fraction. [4]

3 A tripod with vertex T stands on level ground. The three legs TA, TB and TC are each 60 cm long. The triangle ABC is equilateral with side 50 cm. The point M is the mid-point of BC, and G lies on MA such that MG : GA = 1 : 2. You are given that T lies vertically above G.

Find the angle which the leg TA makes with the ground.

[5]

[3]

www.mymathscloud.com

4 Find, by calculus methods, the x-coordinate of the minimum point on the curve

$$y = 2x^3 - 3x^2 - 12x + 6.$$

Show your working clearly, giving the reasons for your answer.

- 5 (a) Find the value of x in the range $0^{\circ} < x < 360^{\circ}$ that satisfies both $\tan x = 0.75$ and $\cos x = -0.8$. [3]
 - (b) Find all the values of x in the range $0^{\circ} < x < 360^{\circ}$ that satisfy $\sin x = -2\cos x$. [3]
- 6 Express $(2 + \sqrt{3})^3$ in the form $a + b\sqrt{3}$ where a and b are integers. [4]
- 7 Find the points of intersection of the line y = 3x + 1 with the circle $x^2 + y^2 = 12$, giving your answers correct to 2 decimal places. [5]
- 8 The points A, B, C are three points on an orienteering course. B is 1100 metres from A on a bearing of 060°. C is 1300 metres from A and due north from A.

- (i) Show that BC = 1212 metres, correct to the nearest metre. [2]
- (ii) Hence find the bearing of C from B.
- **9** The probability that I am late for work on any given day is 0.1. Being late on one day is independent of any other day.

Find the probability that in a week of 5 working days I am late at least twice. Give your answer correct to 4 decimal places. [5]

[3]

www.mymathscioud.com

[5]

You are given that $g(x) = x^3 + 4x^2 - x - 22$.

(iii) Show that g(2) = 0. [1]

[2]

(iv) Hence show that the equation g(x) = 0 has only one real root.

Section B

WWW. MYMathscloud.com 11 A taxi firm plans to change its fleet of vehicles by buying MPVs (multi-purpose vehicles) and cars. MPVs can carry up to 7 passengers, and cars can carry up to 4 passengers.

MPVs cost £20 000 and cars cost £9000.

The firm can spend up to £180 000.

There is a maximum of 12 drivers available at any one time.

Denoting the number of MPVs to be bought as x and the number of cars to be bought as y, form two inequalities in x and y. [3]

On a graph draw suitable lines and shade the region that the inequalities do not allow. [Take 1 cm to represent 1 vehicle.]

From your graph find a pair of values (x, y)

- (i) which uses all the $\pounds 180\ 000$, [1] (ii) which uses all 12 drivers but minimises the expenditure on vehicles, [1]
- (iii) which maximises the number of people that can be carried simultaneously. [3]
- 12 The shape shown in the diagram is part of a circle. The centre of the circle is F(8, 4) and AD and BC are tangents at A and B respectively. A is the point (3, 4) and B is the point (11, 8).

A wire is stretched from D to A, round the circumference of the circle to B and then to C, where D and C are on the x-axis. Units are centimetres.

(a) Find the equation of the circle.

- [4] (i) Find the gradient of FB and hence the equation of the tangent BC. **(b)**
 - (ii) Given that the length of the wire from A to B in contact with the circle is 11.07 cm, correct to 2 decimal places, find the total length of the wire. [5]

[Turn over

[3]

[4]

5

- www.mymathscloud.com 13 I regularly travel a journey of 200 kilometres. When I travel by day I average v kilometres per hour. When I travel at night the traffic is not so bad, so I can average 20 kilometres per hour faster. This means that I am able to complete the journey in 50 minutes less time.
 - (i) Write down expressions for the journey times during the day and at night. [2]
 - (ii) Hence form an equation in v and show that it simplifies to

$$v^2 + 20v - 4800 = 0.$$
 [5]

(iii) Hence find the times it takes me to complete the journey during the day and at night. [5]

- 14 A car starts from rest and reaches 20 m s^{-1} in 8 seconds.
 - (a) Jane models the motion of the car by assuming constant acceleration during the first 8 seconds.
 - (i) Find the value of the constant acceleration. [2]
 - (ii) Find the distance travelled during this time. [2]
 - (b) Paul claims that constant acceleration is not a good model in this situation.

He uses the following formula for the velocity, $v m s^{-1}$, at time t seconds for the first 8 seconds of motion.

$$v = \frac{60t^2 - 5t^3}{64}$$

- (i) Show that this formula does give v = 0 when t = 0 and v = 20 when t = 8. [1]
- (ii) Find the acceleration when t = 8. [3]
- (iii) Find the distance travelled during the first 8 seconds using this model. [4]

Mark Scheme

June 2004

ADVANCED FSMQ	
MARK SCHEME	
Maximum mark: 100	
Syllabus/component:	
6993 Additional Mathematics	
Paper set Date: June 21, 2004	

Mark scheme

6993 Additional Mathematics.

June 2004 Mark scheme

		6993 Additional Mathematics. June 2004	Mark sch	eme www.mymainscioud.com
1	(i)	-3 - 0 - 3 - 1		
		Gradient AC = $\frac{1}{7 - 2} = \frac{1}{9} = \frac{1}{3}$	B1	
		Gradient BD = $\frac{-4-2}{0-2} = \frac{-6}{-2} = 3$	B1	
		Since $3 \times -\frac{1}{3} = -1$ the lines are perpendicular	B1 3	
	(ii)	Mid - point of BD = $\left(\frac{2+0}{2}, \frac{2+-4}{2}\right) = (1, -1)$	B1	
		Grad AM $=\frac{-1-0}{1-2} = -\frac{1}{3} =$ Grad AC \Rightarrow points collinear	B1 B1	
		Alternatively: Equation of AC is $x + 3y + 2 = 0$		B1
		This equation is satisfied by $(1, -1)$ as $1-3+2=0$	3	B1
2		Area = $\int_{-2}^{2} (4 - x^2) dx = \left[4x - \frac{x^3}{3} \right]_{-2}^{2}$ = $\left(8 - \frac{8}{3} \right) - \left(-8 - \frac{-8}{3} \right) = 16 - \frac{16}{3} = \frac{32}{3}$	M1 A1 M1 A1	Integrate or $2 \times \int_{0}^{2}$ Substitute
2			4	
3		M is the mid-point of BC \Rightarrow BM = 25 cm. By Pythagoras, MA = $\sqrt{50^2 - 25^2} = 25\sqrt{3} = 43.3$	M1 A1	For MA
		$\Rightarrow AG = \frac{50}{3}\sqrt{3} = 28.87 \text{ cm}$	F1	For AG
		$\Rightarrow \text{ angle} = \cos^{-1} \frac{28.87}{60} = 61.2^{\circ}$ Alt: Find angle by cosine rule of TAM Find AM and TM = M1	M1 A1 5	
		AM correct A1 TM correct A1 Cosine rule used M1 A1		
4		$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 6x - 12$	B1	
		$= 0 \text{ when } x^2 - x - 2 = 0$ $\Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = 2, -1$	M1 A1	
		By considering sign of grad either side of turning point \Rightarrow Minimum at $x = 2$	M1 A1	
		Alternatively: $\frac{d^2 y}{dx^2} = 12x - 6$: When $x = 2$ $\frac{d^2 y}{dx^2} > 0 \Rightarrow$ Minimum	5	M1 A1

				WWW. My Mary Mains
5	(a)	From calculator, $\tan^{-1}0.75 = 36.9$ There is a second angle in the third quadrant, where the cos value is negative i.e. $x = 180 + 36.9 = 216.9^{0}$	B1 B1 B1 3	Only 1 answer. Accept anything that is correct.
	(b)	$\tan x = -2$ $\Rightarrow 116.6^{\circ} \text{ and } 296.6^{\circ}$ Alt: square both sides $\Rightarrow \sin^{2} x = 4\cos^{2} x \Rightarrow \sin^{2} x = 4 - 4\sin^{2} x$ $\Rightarrow 5\sin^{2} x = 4 \Rightarrow \sin x = \pm \frac{2}{\sqrt{5}} \Rightarrow x = 63.4$ Sorting out correct quadrants to give correct angles N.B. any extra angles means no "sorting" of quadrants So M0	B1 B1 B1 3	For Tan <i>x</i> -1 extra values in range B1 Pythagoras B1 63.4 B1 two answers
6		$(2+\sqrt{3})^3 = 2^3 + 3.2^2\sqrt{3} + 3.2.3 + 3\sqrt{3}$ = $8+12\sqrt{3}+18+3\sqrt{3}$ = $26+15\sqrt{3}$ Alt. Multiply out 3 brackets then mult by third M1 For 7 A1 for $4\sqrt{3}$ A1 Answer A1 Alt: Mult everything by everything else (i.e. pick out 8 numbers) M1 4 terms correct A1 Other 4 terms correct A1 Collect up A1	M1 A2 A1 4	Binomial, includes coefficients all terms A1 one error collection of integers and surds
7		Substitute for y: $x^{2} + (3x+1)^{2} = 12 \Rightarrow 10x^{2} + 6x - 11 = 0$ $\Rightarrow x = \frac{-6 \pm \sqrt{36 + 440}}{20} = \frac{-6 \pm \sqrt{476}}{20} = \frac{-6 \pm 21.82}{20}$ $= -1.39 \text{ or } 0.79 \Rightarrow y = -3.17 \text{ or } 3.37$ i.e.(-1.39, -3.17) or (0.79, 3.37) Alt: Sub for x to give quadratic in y: $10y^{2} - 2y - 107 = 0$	M1 A1 M1 A1 A1 5	Get quadratic Use formula Alt : Trial and improvement to 2 dp Both <i>x</i> Both <i>y</i> Alt. A1 one pair, A1 the other pair

					mm m
					Mynathsch
8	(i)	Cosine rule gives $DC^2 = 1100^2 + 1200^2 = 2,1100,1200,,(0, -147000)$	M1		·04.0
		BC = 1100 + 1500 -2.1100.1500.0000 = 147000 \Rightarrow BC = 1212 metres	A1		
				2	
	(ii)	sin rule gives $\frac{\sin C}{1100} = \frac{\sin 60}{1212} \Rightarrow C = 51.8$	M1	A1	Or B = 68.2 or 68.3
		\Rightarrow Bearing = 360 - 51.8 = 308 ^o	F1		Alternative methods include
		Or 308.2 or 308.3		3	cosine rule and
		(Do not accept any more decimal places)			splitting triangle
					angled triangles
9			D1		
		$P(0) = 0.9^{3} = 0.59049;$	BI		
		$P(1) = 5.(0.9)^4.(0.1) = 0.3281$	B2		Including
		P(at least twice) = 1 - P(0) - P(1)			coefficient
		= 1 - 0.5905 - 0.3281 = 0.0815	711	5	
		Alt: Add 4 terms: B3,2,1 for the terms1 each error or			
		omission.			
		M1 Add the 4 terms. A1 ans Special case $P(2) = 0.0729$ B2			
10	(i)	$(x+3)^2 = x^2 + 6x + 9.$			
		So $x^2 + 6x + 11 = (x + 3)^2 + 2$	B1	B1 2	For 3, 2
	(ii)	$f(x) = 0 \implies (x + 3)^2 = -2$ which is never true.	B1	1	
	(iii)	g(2) = 8 + 16 - 2 - 22 = 0	B1	1	
	(iv)	$g(x) = (x-2)(x^2 + 6x + 11)$	M1	1	
		$\Rightarrow g(x) = 0 \Rightarrow (x-2)(x^2 + 6x + 11) = 0$	A1		
		\Rightarrow <i>x</i> = 2 as quadratic has no roots	A1		A comment must
				3	be made about the quadratic

Section B

				WWW. M. MIL
Sec	tion B			Unathscioud.c
11		Cost: $20\ 000x + 9\ 000y \le 180\ 000$ gives $20x + 9y \le 180$. Drivers: $x + y \le 12$ Graphs [These meet at (6.54, 5.45).]	M1 A1 B1 B4,3,2,1 7	B1 axes (whole area on page, axes labelled <i>x</i> , <i>y</i> or by definition B1 B1 each line
		N.B. If inequalities not given but lines and shading correct on graph then give M1 for implied inequalities. If written along lines then give full marks		B1 correct shading
	(i)	(9, 0)	B1 1	
	(ii)	(0,12)	B1 1	
	(iii)	The value of $P = 7x + 4y$ at this point is 67.65 So the maximum value of <i>P</i> is 66 or 67 7x + 4y = 67 does not pass through any point 7x + 4y = 66 passes through the point (6, 6) . Alt: Try "near points", e.g. (6, 6), (7, 4) Giving 66 at (6, 6)	M1 M1 A1	For correct point For integer values required M1 M1 (integer points)
12	(a)	Radius = 5 $\Rightarrow (x-8)^2 + (y-4)^2 = 25$	B1 M1 A1 3	A1
	(b)(i)	For tangent at B: Grad FB = $\frac{4}{3}$ \Rightarrow grad of tangent at B = $-\frac{3}{4}$ $\Rightarrow 3x + 4y = 65$	B1 M1 M1 A1 4	For gradient For gradient For equation
	(b)(ii)	AD = $\overline{4}$ Tangent at B meets x axis at $(21^2/_3, 0)$ $\Rightarrow BC = \sqrt{\left(21\frac{2}{3}-11\right)^2 + \left(8-0\right)^2} = 13.33$ AB = 11.07 \Rightarrow Total length = 28.4 cm	B1 E1 M1 A1 F1	Depends on their equation in (b)(i) Correct application of pythagoras Depends on the M
			5	mark

					mm 1
					Mymar
					·ITISCIOL
13	(i)				40 [.] Co,
		Time during the day = $\frac{200}{100}$	B1		
		Time during the night = $\frac{200}{1000}$	B1		
	(**)	v+20	2.64	2	
	(11)	$\frac{200}{v} - \frac{200}{v+20} = \frac{50}{60}$	MI A1		Units correct (i.e. divide by 60)
		$\Rightarrow 200(v+20) - 200v = \frac{5}{6}v(v+20)$	M1		Manipulate
		$\Rightarrow 4000 \times 6 = 5v(v+20)$	A1		
		$\Rightarrow 5v^2 + 100v = 24000$			
		$\Rightarrow v^2 + 20v - 4800 = 0$	A1	5	
	(iii)	$-20 \pm \sqrt{20^2 - 4.(-4800)}$ $-20 \pm \sqrt{19600}$ -20 ± 140	M1		Correct formula
		$v = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	AI		For speed Alt:
		$v = -10 \pm 70 = 60$	A1		Factorise M1 Corr. brackets A1
		\Rightarrow Day speed = 60 \Rightarrow Day time = $\frac{200}{200}$ = 3 hrs 20 mins	T 1		
		60 200	ГІ		(Allow 3 $^{1}/_{3}$ hrs)
		\Rightarrow night speed = 80 \Rightarrow night time = $\frac{200}{80}$ = 2 hrs 30 mins	F1	5	
		Alt: Night time = day time -50 mins			
14	(a)(i)	$v = at \Rightarrow a = \frac{20}{2} = 2.5 \text{ ms}^{-2}$	M1	Δ1	Units required in
		8	1411	2	(a)1 once if units wrong or missing.
	(a)(ii)	$s = \frac{1}{2}at^2 \Rightarrow s = 80m$	M1	A1 2	
	(b)(i)	Substitute $t = 0$ to give $v = 0$ and $t = 8$ to give $v = 20$	B1	1	
	(b)(ii)	Differentiate: $a = \frac{dv}{dt} = \frac{120t - 15t^2}{ct}$	M1	A1	
		$\frac{dt}{dt} = 64$ When $t = 8 a = 0$	B1		
		Special Case: If 64 left off M1 A0 B1		3	
	(b)(iii)	Integrate: $s = \int_{0}^{8} \frac{60t^2 - 5t^3}{64} dt = \left[\frac{20t^3 - \frac{5}{4}t^4}{64}\right]^{8}$	M1	A1	Integrate
		$= \left(\frac{10240 - 5120}{64}\right) = 80m$	M1	A1 4	Substitute

Examiner's Report

FSMQ Additional Mathematics (6993) Report, Summer 2004

www.mymathscloud.com The regulations for an Advanced FSMQ, as stated clearly in the specification, is that the appropriate starting point is a good grade at Higher Tier. Many candidates started from here and achieved good scores, including some full marks, which was most encouraging. However, as stated last year, it was equally clear that many candidates had not started from the appropriate place. Many candidates not only failed to demonstrate any understanding of the extension material but failed to demonstrate the sort of understanding of some Higher Tier topics. There were a distressing number of candidates scoring very low marks, including single figures and 0. This cannot have been a positive experience for them. Centres are encouraged to seek advice, if necessary, to find the most appropriate course for their students and to seek for further advice on this particular course.

The mean mark was 50.4, down 8 marks from last year, indicating that candidates found the paper this year a little more difficult. The thresholds were reduced accordingly.

Section A

Q1. (Coordinate Geometry)

Weaker candidates usually struggle with this topic, but the basic focus of this question should have enabled all candidates to get started. In fact a number were not able to find the gradient of a line given two points on it. In part (ii) the mid-point was also often wrong. Most candidates found the mid-point, found the equation of AC and showed that one lay on the other. Very few appealed to geometry, or found gradients of, say, AM and AC showing them to be equal.

[Gradients 3 and $-\frac{1}{3}$; lines perpendicular.; Midpoint (1, -1)]

Q2. (Area under curve).

In spite of the diagram given not everyone used the correct limits, and then a number got the arithmetic wrong at the end, even offering an answer of 0!!

[Area =
$$10\frac{2}{3}$$
]

Q3. (Trigonometry on 3-D shape)

Often well done, but the greatest error was a failure to use Pythagoras properly taking $AM^2 = 50^2 + 25^2$. A few used other methods, such as the cosine rule and a number did not take enough care over the information given, interchanging 50 and 60. $[61.2^{\circ}.]$

Q4. (Stationary values).

Most candidates were able to differentiate. Not quite so many were able to deal with the common factor of 6 in the process of solving $\frac{dy}{dx} = 0$. Even fewer were able to justify mathematically the minimum point..

[x = 2.]

Q5. (Trigonometrical ratios for angles greater than 90° .)

Candidates were not comfortable with this question. In part (i) the idea of one ratio being positive and another negative giving the quadrant within which the angle lay was not familiar with most candidates. A number found all the angles satisfying the tan ratio and all the angles satisfying the cos ratio and took the (only) common value. Others gave a number of answers for which they were penalised. In part(ii) the relationship between tan, sin and cos, a specific specification topic, was not well known. Squaring and using Pythagoras was of course an option but no one trying it this way got it right.

[(a) 216.9° (b) 116.6° and 296.6° .]

O6. (Binomial expansion)

www.mymathscloud.com A significant number of candidates did not expand using the binomial theorem, choosing instead to multiply out. This was of course acceptable, but long winded. Either way, a number were not able

to use the fact that $\left(\sqrt{3}\right)^3 = 3\sqrt{3}$.

$$[26+15\sqrt{3}]$$

Q7. (Intersection of line and curve).

The usual errors were offered, most notably $y^2 = 12 - x^2 \Rightarrow y = \sqrt{12} - x$. Other errors included expanding $(3x + 1)^2 = 3x^2 + 1$.

It is worth noting here that the rubric requires answers to 3 significant figures unless otherwise stated. Candidates ought to be aware of this and be more careful in the way they give their answers. A number lost a mark here by not giving their answers to 2 decimal places as required. [(-1.39, -3.17) and (0.79, 3.37)]

Q8. (Trigonometry - cosine and sine rules).

This was usually well done except for the calculation of the final bearing, for which a significant number of candidates lost a mark. Given the context of the question, 3 significant figures gives the nearest degree. We condoned one decimal place in this question but no more. $[308^{\circ}.]$

Q9. (Binomial Probability)

The most significant error in this question was a failure to understand what "at least" means. It was expected that candidates would work 1 - P(0) - P(1). Some worked out the other 4 terms instead but a number gave P(2) as the answer.

[0.0815.]

Q10. (Factor Theorem)

Many found the connections between the parts difficult. Most candidates got part (i) correct but were then unable to use this in part (ii), preferring instead to start again with an attempt to solve a quadratic equation by the formula resulting in a negative discriminant and hence ho roots. This was perfectly acceptable but took rather longer than the award of one mark would warrant. Likewise, part (iii) was done well but candidates were usually unable to use this in part (iv) to factorise and to find the quadratic that they had been dealing with in the first two parts. $[(x+3)^2+2.]$

Section B

Q11. (Linear programming)

There were many successful answers to this question, but also many who clearly had not covered this part of the syllabus. Once the inequalities had been derived and the graphs drawn the last part was straightforward, and it is quite possible that most candidates guessed the answer as, on this occasion, the objective function was not asked for.

((i) (9, 0) (ii) (0, 12), (iii) (6, 6)]

Q12. (Coordinate geometry of the circle)

Candidates were not in general comfortable with this topic, and the derivation of the equation of the circle was not always successful. Candidates often also had difficulty finding the equation of the tangent. Many muddled the x and y axes, finding where this tangent cut the y axis. [(a) $(x-8)^2 + (y-4)^2 = 25$ (b)(i) 3x + 4y = 65, (b)(ii) 28.4 cm.]

Q13. (Algebra)

www.mymathscloud.com A significant number of candidates did not answer this question as they were unable to relate speed, distance and time. Many that might have done well then muddled the units, creating an equation involving 50 rather than $\frac{5}{6}$. However, many were able to reenter the question for the last part as the quadratic equation was given in the question, and this resulted in up to half marks.

[(i) $\frac{200}{v}$, $\frac{200}{v+20} \frac{200}{v}$, $\frac{200}{v+20}$, (iii) 3 hrs 20 mins and 2 hrs 30 mins.]

Q14. (Calculus)

The question was generally well done except for two rather disappointing errors. In part (b)(ii), candidates "lost" the denominator of 64. While this still gave a = 0 at t = 8 the acceleration function was not strictly correct.

In part (b)(iii) candidates "integrated" the denominator, giving the correct integrand divided by 64t. $[(a) (i) 2.5 \text{ ms}^{-2}, (ii) 80 \text{ m}, (b) (ii) 0, (iii) 80 \text{ m}.]$

OXFORD CAMBRIDGE AND RSA EXAMINATIONS FREE-STANDING MATHEMATICS QUALIFICATION Advanced Level

ADDITIONAL MATHEMATICS

6993

Summer 2005

Monday

20 JUNE 2005

Morning

2 hours

Additional materials: Answer booklet Graph paper

TIME 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all questions.
- You are permitted to use a scientific or graphical calculator in this paper.
- Additional sheets of graph paper should be securely attached to your answer booklet.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given correct to three significant figures where appropriate.
- The total number of marks for this paper is 100.

Section A

- www.nymainscioud.com Use calculus to show that there is a maximum point at x = 3 on the curve $y = 9x^2 - 2x^3$ and find 1 [5] the coordinates of this point.
- The function f(x) is defined by $f(x) = x^3 4x^2 + 5x 2$. 2 [2] (i) Find the remainder when f(x) is divided by (x + 2). (ii) Show that (x - 1) is a factor of f(x). [1] [4] (iii) Hence solve the equation f(x) = 0.
- A triangle has sides 8 cm, 7 cm and 12 cm. Calculate the largest angle of the triangle, correct to the 3 nearest degree. [5]
- Find the values of θ in the range $0^{\circ} \le \theta \le 360^{\circ}$ satisfying the equation 4

$$4\sin\theta = 3\cos\theta$$
.

Give your answers to the nearest 0.1 degree.

- In a large batch of glasses, 14% are defective. From this batch 8 glasses are selected at random. 5 Calculate which is more likely:
 - (A) none of the glasses is defective,
 - (B) at least two of the glasses are defective.
- (i) Expand $\left(x-\frac{1}{x}\right)^4$ using the binomial expansion. Show all your working. 6 [4]
 - (ii) Explain why the substitution x = 1 will help to justify your answer.
- The gradient function of a curve is given by $\frac{dy}{dx} = a + bx$. Find the values of a and b and the 7 equation of the curve given that it passes through the points (0, 2), (1, 8) and (-1, 2). [7]

2

[4]

[7]

[1]

www.mymathscloud.com A car moves in a straight line. Its velocity in metres per second, t seconds after passing a point A, 8 is given by the equation

$$v = 27 - \frac{1}{8}t^3$$
.

It comes to rest at a point B.

- (i) Show that the car is at B when t = 6.
- (ii) Find the distance AB.

(i) Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that the equation

$$2\cos^2\theta + \sin\theta = 2$$

can be written as $2\sin^2 \theta - \sin \theta = 0$.

(ii) Hence find all values of θ in the range $0^{\circ} \le \theta \le 180^{\circ}$ satisfying the equation

$$2\cos^2\theta + \sin\theta = 2.$$
 [4]

9

[2]

[1]

[5]
www.nymathscloud.com

The curve shown has equation $y = \frac{2}{3}x^2 - 2x + 10$.

(1)	Find the equation of the tangent to the curve at A $(3, 10)$.	[4]
(ii)	Show that the equation of the normal to the curve at B (0, 10) is $2y - x = 20$.	[3]
(iii)	Find the coordinates of the point C where these two lines intersect.	[3]
(iv)	Calculate the length BC.	[2]

11 A small factory makes two types of components, X and Y. Each component of type X requires materials costing £18 and each component of type Y requires materials costing £11. In each week materials worth £200 are available.

Each component of type X takes 7 man hours to finish and each component of type Y takes 6 man hours to finish. There are 84 man hours available each week.

Components cannot be left part-finished at the end of the week. In addition, in order to satisfy customer demands, at least 2 of each type are to be made each week.

- (i) The factory produces x components of type X and y components of type Y each week. Write down four inequalities for x and y.
- (ii) On a graph draw suitable lines and shade the region that the inequalities do not allow. (Take 1 cm = 1 component on each axis.) [5]
- (iii) If all components made are sold and the profit on each component of type X is £70 and on each component of type Y is £50, find from your graph the optimal number of each that should be made and the total profit per week.

(Do not forget to hand in your graph paper with your answer booklet.)

10

www.mymathscloud.com (i) A circle has equation $x^2 + y^2 - 2x - 4y - 20 = 0$. Find the coordinates of its centre, C, and 12 its radius.

5

(ii) Find the coordinates of the points, A and B, where the line y = x + 2 cuts the circle. [5]

[4]

[5]

(iii) Find the angle ACB.

13

The shape of the bed of a river is to be modelled mathematically. The diagram represents a crosssection of the river. A and B on the x-axis represent points on opposite banks of the river at water level. (Units are metres.)

The shape of the river bed between A and B is modelled by the equation

$$y = \frac{3}{16}(x^2 - 16)$$

- (i) Find the coordinates of A and B and hence state the width of the river represented by the length AB. [2]
- (ii) Find the depth of the river at its deepest point. [2]
- (iii) Find the area of the cross-section of the river.
- (iv) The river flows at 20 metres a minute. You should assume that this rate applies to all points of this cross-section.

Find the volume of water that flows through this cross-section per minute.	[1]
6 F	L*J

(v) Give two reasons why this model may not be a good model. [2]

June 2005

ADVANCED FSMQ				
MARK SCHEME Maximum mark: 100				
Syllabus/component: 6993 Additional Mathematics				
Paper Date: June 20, 2005				
Mark Scheme				

ww.Mynaihscioud.com

6993 Additional Mathematics Summer 2005

Mark Scheme

Section A

6993 Additional Mathematics Summer 2005 Mark Scheme						
1	$\frac{dy}{dx} = 18x - 6x^2 = 0 \text{ when } x^2 - 3x = 0$	M1	One term with decreasing power			
	$\Rightarrow x(x-3) = 0 \Rightarrow x = 3,0$	A1	Equates to 0 and gets 3 or subs 3 and gets 0 Or sub $x = 3$ to give 0			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 18 - 12x$	DM1	Or "before and after" on gradient (or curve)			
	When $x = 3$ $\frac{d^2 y}{dx^2} < 0 \Rightarrow$ Maximum	A1	Getting it right and sub 3 and getting max.			
	When $x = 3, y = 27$	B1	y coordinate			
		5				

2	(i)	f(-2) = -8 - 16 - 10 - 2	M1	Or long division. We need
				to see $x^3 + 2x^2$ subtracted
		= -36	A1	and x^2 on top.
			2	
	(ii)	f(1) = 1 - 4 + 5 - 2 = 0	B1	Arithmetic must be seen
			1	
	(iii)	$\Rightarrow f(x) = (x-1)(x^2 - 3x + 2)$	M1	To find quadratic
				Or trial to find other roots
		=(x-1)(x-1)(x-2)	A1	Each factor
			A1	
		\Rightarrow <i>x</i> = 1, 1, 2	B1	Ans expressed properly
			4	

3	Largest angle is opposite longest side.	B1	Or for sum $= 180$
	$\cos\theta = \frac{8^2 + 7^2 - 12^2}{2 \times 8 \times 7}$ $= -0.2768 = \left(-\frac{31}{112}\right)$	M1 F1 A1 A1	Give M1 F1 for cos rule regardless of which angle
	$\Rightarrow \theta = 106^{\circ}$	5	
	Note 1: Other angles are 34.1 and 39.8 Note 2: Scale drawing could get the B1 but no more.		See note above

(r
Cloud.com
7
S ²

5	P(all sound) = $(0.86)^8 = 0.299$	B1	Allow 4 d.p.
	P(at least 2 defective) = $1 - (0.86)^8 - 8(0.86)^7 (0.14)$ = $1 - \text{ ans above} - 0.3896$	B1 M1 A1 M1	powers coeff with term having product (0.3896 implies 8) for 1- 2 terms
	= 0.311 i.e. P(at least 2 defective) is greater.	A1 F1 7	ans conclusion (based on their answers providing each is < 1

6	(i)	$\left(x - \frac{1}{x}\right)^{4} = x^{4} - 4x^{3}\frac{1}{x} + 6x^{2}\left(\frac{1}{x}\right)^{2} - 4x\left(\frac{1}{x}\right)^{3} + \left(\frac{1}{x}\right)^{4}$ $= x^{4} - 4x^{2} + 6 - \frac{4}{x^{2}} + \frac{1}{x^{4}}$ For complete expansion by multiplying, give B4, -1	B1 B1 B1 B1	powers correct coeffs correct signs outside brackets answer
		for each mistake.	4	
	(ii)	Substituting will give the same value for both	B1	
		(=0)	1	

7	$\frac{dy}{dx} = a + bx \Longrightarrow y = ax + \frac{bx^2}{2} + c$	M1 A1	Integrate (ignore <i>c</i>)
	$ax \qquad 2 (0,2) \Longrightarrow c = 2$	M1 A1	Add and work out <i>c</i> .
	$(1,8) \Longrightarrow 8 = a + \frac{b}{2} + 2$	DM1	Attempt to substitute both
	$(-1,2) \Longrightarrow 2 = -a + \frac{b}{2} + 2$	M1	Solve simultaneously
	Solve: $b = 6, a = 3 \Rightarrow y = 3x + 3x^2 + 2$	A1 7	Equation must be given

				www.mymark	ATSUIS S
8	(i)	$v = 0$ when $\frac{1}{8}t^3 = 27 \Longrightarrow t = 2 \times 3 = 6$	B1 1	33	Cloud.com
	(ii)	$s = \int_{0}^{6} \left(27 - \frac{1}{8}t^{3} \right) dt$	M1 A1	Integrate 2 correct terms	
		$= \left[27t - \frac{t^4}{32}\right]_0^6$	M1	Substitute	
		=162 - 40.5 = 121.5	A1	Ans	
		Distance = 121.5 metres	B1	Units dependent on M	
			5	marks	

9	(i)	$\cos^{2}\theta = 1 - \sin^{2}\theta \Longrightarrow 2 - 2\sin^{2}\theta + \sin\theta = 2$ $\Longrightarrow 2\sin^{2}\theta - \sin\theta = 0$	M1 A1 2	N.B. Answer given
			4	
	(ii)	$2\sin^2\theta - \sin\theta = 0 \Longrightarrow \sin\theta (2\sin\theta - 1) = 0$	B1	B1 for each angle
		1	B1	
		$\Rightarrow \sin\theta = 0 \text{ or } \sin\theta = \frac{1}{2}$	B1	
			B1	
		$\Rightarrow \theta = 0, \ 30, 150, 180$	4	all 4

Section B

				mm. m.
Sec	ction I	3		Symathscio
10	(i)	$\frac{dy}{dx} = \frac{4x}{3} - 2;$ When $x = 3$ $g = 2$ $\Rightarrow (x - 10) = 2(x - 2) \Rightarrow x - 2x + 4$	M1 A1 DM1	Diffn
		$\Rightarrow (y-10) = 2(x-5) \Rightarrow y = 2x+4$ (Watch any use of (0,4) - no marks)	A1 4	Correct line for their gradient
	(ii)	At (0,10) $g = -2$; Gradient of Normal $= \frac{1}{2}$	M1 A1	g = -2 must be seen
	(iii)	$\Rightarrow y = \frac{1}{2}x + 10 \Rightarrow 2y - x = 20$ Substitute: $2(2x+4) - x = 20 \Rightarrow 3x = 12$	Δ1 Δ1	N.B. Answer given
		$\Rightarrow x = 4,$ y = 12 (Allow 3 for (4, 12)	F1 3	y value
	(iv)	Pythagoras for BC = $\sqrt{(12-10)^2 + (4)^2}$ = $\sqrt{20} = 2\sqrt{5} \approx 4.472$	M1 A1	
	(*)		D1	
11	(1)	$18x + 11y \le 200$ $7x + 6y \le 84$ $x \ge 2$ $y \ge 2$	B1 B1 B1 B1 4	-1(once only) if = sign missing B0 for any line with inequality the wrong way round.
	(ii)	Graph plus shading	B4	B1 for each line
			5	all lines correct
	(iii)	Maximum profit is at the intersection of the lines: P = 70x + 50y.	B1	May be implied for any value
		Nearest integer point to it is $(9, 3)$ giving $P = 780$	B1 B1 3	(Intersection of lines is at (8.77, 3.76) giving 802.4)

				www.myms	La characteria
12	(i)	$(x-1)^{2} + (y-2)^{2} = 25;$ Centre (1, 2), radius 5	M1 A1 F1	For stating ans ft from equation	Your.com
	(ii)	Substitute: $(x-1)^2 + x^2 = 25$ $\Rightarrow 2x^2 - 2x - 24 = 0$ $\Rightarrow x^2 - x - 12 = 0 \Rightarrow (x-4)(x+3) = 0$ $\Rightarrow x = 4, -3$ $\Rightarrow (4, 6), (-3, -1)$	M1 F1 M1 A1 A1 5	ft from (i)	-
	(iii)	AC = BC = 5, AB = $7\sqrt{2}$ \Rightarrow Angle = $2 \times \sin^{-1} \left(\frac{7/2}{5} \sqrt{2} \right) = 2 \times \sin^{-1} (0.99)$ = $81.87 \Rightarrow ACB = 163.7$	M1 A1 M1 A1 4	for AB	

13	(i)	A (-4, 0), B(4, 0) gives width = $8m$	B1 B1	
			2	
	(ii)	x = 0, (0, -3)	B1	ignore -ve sign
		gives depth $= 3m$	B1	
			2	
	(iii)	Cross section area = $\int_{-4}^{4} \frac{3}{16} (x^2 - 16) dx$ = $\frac{3}{8} \int_{-4}^{4} (x^2 - 16) dx$	M1	Integration required. Correct expression (his limits from (i)) (ignore $\frac{3}{12}$)
		$= \frac{3}{8} \left[\frac{x^3}{3} - 16x \right]_0^4 = -\frac{3}{8} \left(\frac{128}{3} \right)$ $= 16 \mathrm{m}^2$	M1 A1 A1 A1	Integration Both terms Working it out - include ${}^{3}/_{16}$
	(iv)	\Rightarrow Vol per minute = $16 \times 20 = 320$ m ³	B1 1	$20 \times Ans$ from (iii)
	(v)	Water does not usually flow at a constant rate. The river bed will not be symmetric.	B1 B1 2	
		If units are omitted throughout, then subtract one m then deduct from first answer and bod the rest. If any of the answers have units then do not deduct	nark. If the mar	not all parts have been done k.

Examiner's Report

Free Standing Mathematics Qualification, Advanced Level 6993 Additional Mathematics

Summer, 2005 Chief Examiner's Report

The paper was a little easier this year than last, particularly in Section A. While this meant that a number of good candidates performed even better than the good candidates last year it is still true to say that there are a significant number of candidates who appear to have been entered for a qualification that is not suited to their abilities. For at least one centre no mark achieved reached double figures. The specification states that this is an Advanced FSMQ and that an appropriate starting point is a grade A*, A or B at GCSE with a thorough knowledge of the content of the Higher Tier. We believe that with this starting point a modest mark should be achievable with little or no extra learning. Consequently we believe that those achieving such low marks as single figures were not starting from this point and therefore this specification was not appropriate for them. This could not have been a positive experience for them and Centres might consider seeking advice as to what might be an appropriate course where they could demonstrate positive achievement. The mean mark was 46.8.

www.nymathscloud.com

Section A

Q1 (Calculus)

For most candidates this was a straightforward start to the paper, though many missed parts of the question, such as demonstrating that the turning point was a maximum or failing to find the y coordinate of the point.

[Maximum point at (3, 27)]

Q2 (Functions)

Most candidates knew the factor theorem and obtained the second part correctly, while many did not know the remainder theorem for part (i). Instead, long division was carried out, often successfully, but for many the inevitable algebraic errors crept in causing errors. In part (iii) a few obtained the solution by trial and error, based on their knowledge of what possible roots there could be, given the constant number at the end. The significant majority used division to obtain a quadratic which they then solved correctly. Unfortunately a significant number of candidates failed to finish the question by giving the solution to the cubic equation, being content instead just to give the roots of the quadratic.

[(i) - 36, (iii) x = 1, 1, 2]

Q3 (Cosine rule)

This question asked for the largest angle. Those who found it therefore gained full marks, but many of those who did not appreciate that the largest angle was opposite the longest side gave themselves extra work.

 $[106^0]$

Q4 (Trigonometrical equation)

There were a few candidates who plotted the graphs $y = \sin x$ and $y = \cos x$ on their calculators and were able to zoom in on their intersections to find the roots to the required degree of accuracy; quite a number doing it this way, however, either failed to appreciate that there were two roots, or failed to find the values to the correct degree of accuracy, for which they were penalised.

The expected method was to obtain $\tan \theta = 0.75$. There were many errors here, including obtaining $\tan \theta = 1.33$.

The vast majority who failed to get anywhere with the question failed to demonstrate a knowledge of the relationship between the trigonometrical functions.

[36.9 and 216.9⁰]

Q5 (Binomial distribution)

www.nymathscioud.com A few candidates did not read the question carefully. Some read the question as "exactly 2" rather than "at least 2". Many also failed to give a conclusion at the end.

Q6 (Binomial expansion)

This question was not always well done. The combination of the powers, the coefficients and the signs defeated all but the most able.

The last comment was often fudged and not at all clear, indicating that candidates did not appreciate that to make a substitution of a numerical value in the original and the final expansion should give the same value.

 $[x^4 - 4x^2 + 6 - \frac{4}{r^2} + \frac{1}{r^4}]$

Q7 (Integration)

This question was not done well and we were surprised by some of the answers. Even the most able

candidates were integrating the function $\frac{dy}{dx} = a + bx$ to give $y = \frac{a^2}{2} + b\frac{x^2}{2}$. Even those who got it right then failed to appreciate that there was a non-zero constant of integration.

 $[y = 3x + 3x^2 + 2]$

Q8 (Variable acceleration).

The first mark was easy to obtain for all candidates.

Part (ii) separated the candidates into those who knew that integration was required and those who assumed constant acceleration. A few candidates failed to give the answer properly, giving a numerical value for *s* only rather than stating the distance in metres. [121.5 metres]

Q9 (Trigonometrical equation)

Only a few candidates failed to manipulate the equation using Pythagoras' theorem. However, the solution of the equivalent equation was not done nearly so well. The vast majority failed to appreciate that there are two roots from $\sin\theta = 0$ as well as two from $\sin\theta = 0.5$. $[0^{0}, 30^{0}, 150^{0}, 180^{0}]$

Section B

Q10 (Coordinate geometry)

Part (i) was usually done well but a significant minority took a short cut by making unjustified assumptions from the diagram. In part(ii) there were more assumptions, this time occasionally justified (i.e. that the gradient of the tangent at (0, 10) is -2 given that the gradient at (3, 10) is 2). Candidates need to beware of making assumptions with no justification.

Parts (iii) and (iv) were usually well done and we saw occasionally candidates who were unable to complete parts (i) and (ii) reentering the question here.

The accuracy required for the answer to part (iv) was not given. Candidates should note the rubric of the paper and not simply write down every digit they see on their calculator. In these instances candidates should also be aware of the fact that an exact answer can be given and this was given full credit.

[(i) y = 2x + 4, (iii) (4, 12), (iv) $\sqrt{20} = 2\sqrt{5} = 4.472$]

O11 (Linear programming)

WWW. MYMathscloud.com This question was a source of a number of marks for weaker candidates. Practically every candidate realised that the "best" solution was not the intersection of the lines but a point nearest to it; most failed to investigate this with any logical order (by writing, for instance, a table), but many still got the right answer.

[(i) $18x + 11y \le 200$, $7x + 6y \le 84$, $x \ge 2$, $y \ge 2$, (iii) £780 at (9, 3)]

O12 (Circle)

Those who knew something about the coordinate geometry of the circle got many marks in this question. Unfortunately there were many who were unable to manipulate the equation given into that required (by completing the square) to write down the radius and centre of the circle. Some were able to reenter the question in part (ii) and complete this part successfully. Those who did it most elegantly substituted into their rearranged equation. A few plotted the curve and the line and read off the points of intersections. We felt that this constituted an assumption again, and for full marks we required candidates to demonstrate that the integer points they picked out from their graph did satisfy both equations.

Part (iii) was testing for all candidates but a few were able to complete it successfully. [(i) Centre (1, 2), radius 5, (ii) (4, 6) and (-3, -1) (iii) 163.7⁰]

O13 (Integration and modelling)

Parts (i) and (ii) were usually done quite well, though again, some good candidates lost marks by failing to answer the question properly. In part (i) they would leave it as A(-4, 0) and B(4, 0)without interpreting that the width was 8 metres. In part (ii) they would simply write y = -3 with no interpretation to give the greatest depth.

In part (iii) many got well into this integration but fell down over the manipulation of the fraction and brackets.

Part (iv) was well done even by those who got most of the first three parts wrong.

Many suggestions given in part (v) did not relate to the cross-section and some gave the same explanation in a different way.

Candidates who did not give correct units were penalised - in a modelling question the correct interpretation is required which is usually a little more than the numerical answer.

[(i) Width 8 m, (ii) Depth 3 m, (iii) 16 m^2 , (iv) 320 m^3 (v) For e.g. the bed of a river is not usually smooth or symmetric, and the flow of water is not likely to be constant throughout the crosssection.]

OXFORD CAMBRIDGE AND RSA EXAMINATIONS FREE-STANDING MATHEMATICS QUALIFICATION Advanced Level

15 JUNE 2006

ADDITIONAL MATHEMATICS

6993

Summer 2006

Thursday

Afternoon

2 hours

Additional materials: 16 page answer booklet Graph paper

TIME 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- You are permitted to use a scientific or graphical calculator in this paper.
- Additional sheets of graph paper should be securely attached to your answer booklet.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 100.

2

Section A

- www.mymathscloud.com Find $\int_{1}^{3} (x^2 + 3) dx$. 1 [4]
- 2 Adam and Beth set out walking from a point P. After one hour Adam is 3.6 kilometres due north of P and Beth is 2.5 kilometres from P on a bearing of 035°.

Fig. 2

Calculate how far they are apart at this time. Give your answer correct to 2 significant figures.[4]

- Calculate the values of x in the range $0^{\circ} < x < 360^{\circ}$ for which $\sin x = 2\cos x$. 3 [4]
- 4 (i) Find the distance between the points (2,3) and (7,9). [2]
 - (ii) Hence find the equation of the circle with centre (2, 3) and passing through the point (7, 9). [2]
- Solve the inequality $x^2 + 4x > 5$. 5 [5]
- A curve has gradient given by $\frac{dy}{dx} = 2x + 2$. The curve passes through the point (3,0). Find the 6 equation of the curve. [5]
- 7 (i) Show that the two lines whose equations are given below are parallel.

$$y = 4 - 2x$$

$$4x + 2y = 5$$
[2]

(ii) Find the equation of the line which is perpendicular to these two lines and which passes through the point (1, 6). [3]

www.nymathscloud.com (i) By drawing suitable graphs on the same axes, indicate the region for which the following 8 inequalities hold. You should shade the region which is not required.

$$3x + 2y \le 18$$

$$y \le 3x$$

$$y \ge 0$$
[5]

- (ii) Find the maximum value of x + 2y subject to these conditions. [2]
- You are given that $f(x) = x^3 4x^2 + x + 6$. 9
 - (i) Find the remainder when f(x) is divided by (x 1). [1]
 - (ii) Show that (x 3) is a factor of f(x). [2]
 - (iii) Hence solve the equation f(x) = 0. [4]
- 10 Find the coordinates of the points of intersection of the line y = 5 2x with the curve $y = x^2 - 4x - 11$, giving your answers correct to 2 decimal places. [7]

Section B

www.mymathscloud.com 11 It is known that 65% of all people living in the UK went abroad for a holiday last year.

A random sample of 5 people living in the UK was chosen.

Find the probability that

(i)	all 5 went abroad for a holiday last year,	[1]
(ii)	exactly 4 went abroad for a holiday last year,	[3]
(iii)	at least 2 went abroad for a holiday last year.	[4]

An additional random sample of 5 people living in the UK was chosen.

- (iv) Find the probability that in the 10 people chosen altogether, exactly 8 went abroad for a holiday last year. [4]
- 12 A train normally travels between two points A and D at a constant speed of 30 metres per second. The distance AD is 12 kilometres.
 - (i) Find the time taken for the train to travel between A and D at 30 m s^{-1} . [1]

Between A and D there are two other points, B and C, which are placed such that AB = 2km, BC = 6 km and CD = 4 km. On one day there is a speed restriction of 10 m s^{-1} between B and C.

The train decelerates uniformly from 30 ms^{-1} at A to 10 ms^{-1} at B. It travels the distance BC at $10 \,\mathrm{m\,s^{-1}}$. The train then accelerates uniformly from $10 \,\mathrm{m\,s^{-1}}$ at C to $30 \,\mathrm{m\,s^{-1}}$ at D.

Find

(ii)	the time taken to travel from A to B,	[2]
(iii)	the acceleration over the distance CD,	[3]

(iv) the extra time taken in travelling from A to D as a result of the speed restriction. [6]

www.mymathscloud.com 13 Fig. 13.1 shows a solid block which is in the shape of a pyramid. The horizontal base, ABCD, is a square with side 20 cm and the vertex, V, is 15 cm vertically above the centre, O, of the square base. N is the midpoint of AB.

Fig. 13.1

- (i) Calculate the length of the diagonal AC. [2] (ii) Show that the length of the edge AV is $\sqrt{425}$ cm. [2] (iii) Calculate the angle that the edge AV makes with the base. [2]
- (iv) Calculate the length VN.

M is the point on VB such that AM is perpendicular to VB as shown in Fig. 13.2.

Fig 13.2

(v) Calculate the area of triangle VAB. Hence or otherwise calculate the distance AM. [4]

[2]

Fig. 14 shows the quadratic curve $y = x^2 - 4x + 5$.

- V(2, 1) is the minimum point of the curve.
- T(5,10) is a point on the curve.

The line VP is the tangent to the curve at V and TP is perpendicular to this line.

(i)	Write down the coordinates of P.	[1]
(ii)	Find the coordinates of M, the midpoint of VP.	[2]
(iii)	Find the equation of the tangent to the curve at T.	[4]
(iv)	Show that the tangent to the curve at T passes through the point M.	[2]
(v)	Use the result in part (iv) to suggest a way of drawing a tangent to a point on a quadratic cu without involving calculus.	rve [3]

7 BLANK PAGE

8 BLANK PAGE

6993 Additional Mathematics.

					WWW. MYMS WILLING
	69	93 Additional Mathematics. June 2006	Fina	l N	lark scheme
Q.		Answer	Mar	·k	Notes
Sec	tion A	3	N/1		
1		$\int_{1}^{3} \left(x^{2} + 3 \right) dx = \left[\frac{x^{3}}{3} + 3x \right]_{1}^{3}$	A1		Both terms correct
		$=\left(\frac{27}{3}+9\right)-\left(\frac{1}{3}+3\right)$	DM	1	Substitute 3 and 1
		$= 18 - 3\frac{1}{3} = 14\frac{2}{3}$ Accept 14.7 but not 14.6	A1		Sp. Case: Allow M1 even if one of the values is not as per question.
			2.64	4	
2		Cosine rule: $AB^2 = 2.5^2 + 3.6^2 - 2 \times 2.5 \times 3.6 \times \cos 35$	MI A1		Attempt at cosine rule plus sub I their formula (May have + and/or no 2) May be implied
		= 4.465	A1		Whay be implied
		$\rightarrow \Delta B - 21 (km)$	A1		A0 if correct ans not
		Alternatively: Find sides of rt angled triangle putting East line across triangle, then use trig and Pythagoras is OK		4	given to 2.s.f. (This counts as the tfsf penalty for the paper.)
3		$\sin x = 2\cos x \Longrightarrow \tan x = 2$	B1		
		$\Rightarrow x = 63.4,$	B1		for 63.4
		Add 180	MI		For adding 180 (and
		243 (allow 243.4)	F1		Not if extras are in range.
		Alternative:			
		$\sin x = 2\cos x \Longrightarrow \sin^2 x = 4\cos^2 x \Longrightarrow 1 - \cos^2 x = 4\cos^2 x$			BI
		$\Rightarrow \cos^2 x = \frac{1}{5} \Rightarrow \cos x = \pm \frac{1}{\sqrt{5}} \Rightarrow x = 63.4$			B1
		Sorting which quadrant for other root \Rightarrow Add 180			M1
		243 (allow 243.4)		4	F1
4			N / 1		
4	(i)	$d = \sqrt{(7-2)^2 + (9-3)^2}$	MI		
		$=\sqrt{25+36}=\sqrt{61}$ (= 7.81)	A1	2	
	(ii)	$(x-2)^{2} + (y-3)^{2} = 61$	M1		Correct LHS =
			F1	-	something
				2	

				mm. m
				· Mymain Hains
5		$x^2 + 4x > 5 \Longrightarrow x^2 + 4x - 5 > 0$	M1	Get Quad
		$\Rightarrow (x+5)(x-1) > 0$	A1	LHS.
		Both positive or both negative		Allow $(x+2)^2 > 9$
		$\Rightarrow x > 1 \text{ or } x < -5$	A1	Can be obtained
		Sp. Case Sub $x = 1$ gives $f(x) = 0$ gives $x > 1$ B1 Sub $x = -5$ gives $f(x) = 0$ gives $x < -5$ B1	AI 5	from sketch or
		Subx S gives i(x) = 0 gives $x < S$ Bi		drawn on a number
				line on sketch.
6		$\frac{dy}{dy} = 2r + 2 \Rightarrow y = r^2 + 2r + c$	M1	Integrate
		$\frac{1}{\mathrm{d}x} = 2x + 2 \implies y = x + 2x + c$	A1	For $x^2 + 2x$
			AI	includes c
		Sub: $0=9+6+c \Rightarrow c=-15$		Must he v =
		$\Rightarrow y = x^2 + 2x - 15$	5	
7	(i)	First line $y = 2y + 4$	D1	Poth values seen
/	(1)	Prist line: $y = -2x + 4$ 2 nd line: $y = -2x + \frac{5}{2}$	DI	clearly to be -2
		Therefore same gradients	B1	Comment
		(Alt. Try to solve and get impossibility such as $8 = 5$)	2	
	(ii)	Perpendicular line has gradient $\frac{1}{-}$		
		2	MI	For negative reciprocal (must be
				numeric)
			DM1	·
		$\Rightarrow y-6=\frac{1}{2}(x-1) \Rightarrow 2y-x=11$	AI	form
		2	3	
8	(i)	8 2	B1	3r + 2v < 18
		6	B1	Shading
		4	B1	y = 3x
			B1 B1	Shading $v > 0$ shading
				-1 if triangle shaded
		-1 1 2 3 4 5 6 7 8	5	
	(ii)	8 🛪	5	
		5		
		2		
		-1345673	N/1	Includes attended to
		Point required is intersection	A1	work out $x + 2v$
		this is (2, 6) giving 14	2	

		m
		W. MYMax
(i) $f(1) = 1 - 4 + 1 + 6 = 4$	B1 1	101
(ii) $f(3) = 27 - 36 + 3 + 6 = 0$ i.e. $(x - 3)$ is a factor	M1 A1 2	Substitute or long division. If latter then we must see $x^3 - 3x^2$
(iii) $x^3 - 4x^2 + x + 6 = 0$ $\Rightarrow (x - 3)(x^2 - x - 2) = 0$	M1 A1	Attempt to factorise Quadratic
$\Rightarrow (x-3)(x-2)(x+1) = 0$ $\Rightarrow x = -1, 2, 3$	A1 F1 4	Factors But only if integers
Attempt to get quadratic can be by "trial" or long divisionAlt: test for a root consistent with 6 M1 Get one rootGet one rootA1 Get the other rootGive answerF1		i.e. $x = -1, \pm 2$
0 Substitute: $y = 5 - 2x \Rightarrow 5 - 2x = x^2 - 4x - 11$ $\Rightarrow x^2 - 2x - 16 = 0$ $\Rightarrow x = 5.12, -3.12$ $\Rightarrow (5.12, -5.25), (-3.12, 11.25)$ Special cases: Graphs B1 B1 M1(acknowledging that the answer is where they meet) Max: 3 If no graph but points are given then B1, B1 for each pair. N.B. It is possible to eliminate x to give a quadratic is y. This is $x^2 - 2x - 16 = 0$	M1 A1 M1 A1 F1 M1 A1 7	Correct sub For quadratic eqn Solve Each <i>x</i> Correct pairing

					www.myma
Q.	on P	Answer	Marl	K	Notes
11	(i)	$(0.65)^5 = 0.1160$	B1	-	
	(ii)	$5(0.65)^4(0.35) = 0.3124$	B1 B1 B1	1	$(0.65)^4 (0.35)$ 5× Ans
	(iii)	$1-(0.35)^{5}-5(0.35)^{4}(0.65)$ = 1-0.00525-0.0488 = 0.9460 Misread Sp. Case: Adding 0, 1 and 2 M1 A1 A1 A0 but - 1 misread. Alt: Add terms = P(2) + P(3) + P(4) + P(5) Add 4 binomial = 0.1812 + 0.3364 terms M1 + 0.31324 + 0.1160 Powers A1 Coeffs A1 =0.946 Ans A1	M1 A1 A1 A1	4	1 – 2 or 3 binomial terms Powers (all correct) Coeff ans
	(iv)	$\binom{10}{8} (0.65)^8 (0.35)^2 = 0.1757$	M1 A1 A1 A1	4	Binomial term with at least sum of powers = 10 Powers Coeff Ans

				www.mymain
Q.		Answer	Mark	Notes
12	(i)	$t = \frac{12000}{30} = 400 \text{ sec}$	B1	
	(ii)	$s = \frac{(u+v)}{2}t \Longrightarrow t = \frac{2 \times 2000}{10+30} = 100 \text{sec}$	M1 A1	
	(iii)	$v^{2} = u^{2} + 2as \Rightarrow 30^{2} = 10^{2} + 2a.4000$ $\Rightarrow a = \frac{800}{8000} = \frac{1}{10} = 0.1 \text{ms}^{-2}$	M1 A1 A1	For any valid const accel formula Credit 2 for t_3 if seen here.
	(iv)	$s = \frac{(u+v)}{t} \Rightarrow t = \frac{2 \times 4000}{2 \times 4000} = 200 \text{sec}$	3 M1 A1	Can be given in (ii) if
		2 10+30 For 2nd part: $s = vt \Rightarrow t = \frac{6000}{10} = 600 \text{sec}$	M1 A1	seen.
		\Rightarrow total time = 900 sec. Original time = 400 sec so loss is 500 secs	M1 F1	For $t_1 + t_2 + t_3$ – their (i)
			6	

N.B. Using km throughout counts as misread.

Using 100 m = 1 km is also a misread.

Make sure they are consistently wrong throughout the paper. If not, then deduct the appropriate marks

					www.mynath
13	(i)	$AC = \sqrt{20^2 + 20^2} = 20\sqrt{2} \approx 28.3$	M1 A1	2	
	(ii)	$AV = \sqrt{15^2 + 200} = \sqrt{425}$	M1 A1	2	Must be clear (N.B. Ans given)
	(iii)	Angle VAO = $\tan^{-1} \frac{15}{14.14} \approx 46.7^{\circ}$	M1 A1	2	Using half (i) and tan
	(iv)	$VN = \sqrt{425 - 100} = \sqrt{325} \approx 18.0$ $OR = \sqrt{15^2 + 10^2} = \sqrt{325} \approx 18.0$	M1 A1	2	
	(v)	Area = $\frac{1}{2}$ AB. VN = $\frac{1}{2}$ 20 $\sqrt{325} \approx 180.2$	M1 A1		Either form
		Area = $\frac{1}{2}$ AM. VB = $\frac{1}{2}$ AM $\sqrt{425}$ $\Rightarrow \frac{1}{2} 20\sqrt{325} = \frac{1}{2}$ AM $\sqrt{425}$ 20. $\sqrt{325}$	M1		Finding angle B and then AM from triangle AMB M1A1 And then area can be found M1 A1
		$\Rightarrow AM = \frac{20\sqrt{323}}{\sqrt{425}} \approx 17.5$ N.B. Candidates might find AM by other means and	A1	4	
		then find the area of the triangle using AM. This is acceptable			

14	(i)	P(5, 1)	B1	1	
	(ii)	M is $\left(\frac{2+5}{2},1\right) = \left(3\frac{1}{2},1\right)$	M1 F1	2	2 + their (i), divided by 2
	(iii)	$y = x^{2} - 4x + 5 \Rightarrow \frac{dy}{dx} = 2x - 4$ When $x = 5$, $g = 6 \Rightarrow y - 10 = 6(x - 5) \Rightarrow y = 6x - 20$ $\Rightarrow y = 6x - 20$	M1 A1 DM1 A1	4	Differentiate finding <i>g</i> and using eqn of line
	(iv)	Substitute the coordinates of M into line When $x = 3.5$, $y = 6 \times 3.5 - 20 = 21 - 20 = 1$	DM1 A1	2	Only if line and point are correct!
	(v)	Find the minimum point and draw a line parallel to the <i>x</i> -axis Drop a perpendicular from T to this line at P. Find the midpoint of VP, M The tangent goes through T and M.	B1 B1 B1	3	-

Free Standing Mathematics Qualification, Advanced Level. 6993 Additional Mathematics

Summer 2006 Chief Examiner's Report

The number of candidates for this specification continues to rise, with an entry nearly 15% up from last year and almost double the entry for the first examination in 2003.

We were pleased to see a large number of very good scripts - in more than one centre the total candidature recorded a mark of over 80%. However, it is still disappointing to find a number of centres for which this specification is clearly not appropriate. The specification clearly states that the specification is suitable for those gaining a good grade at GCSE - typically A*, A or B. The specification is designed to be an enrichment programme for Higher Tier students and it is therefore inappropriate for an entry for students at any other level.

The rubric states that answers should be given to 3 significant figures where appropriate. In past years this has resulted in marks being deducted for the following reasons

Answers being approximated to less than 3 significant figures, particularly the answers in the binomial probability question

Angles being given to 2 or more decimal places

Lengths being given to a large number of significant figures, usually resulting from candidates writing down the total display on their calculator.

The "appropriateness" of this procedure should be evident in questions 2 (where 2 significant figures was demanded) 4, 10, 11 and 13. In general, we adopted a policy of deducting a mark for this where it was first seen and only once throughout the paper.

Section A

Q1 (Calculus)

Better candidates had few problems, though the "integration" of the second term to give $\frac{3^2}{2}$ was

often seen. Even those who got the integration correct failed to complete the arithmetic correctly;

typically we saw $\frac{3^3}{3} = 3$.

Q2 (Cosine rule)

There was an alternative method of course, which was to draw a line East -West from B, calculating the sides of the two resulting right-angled triangles. This was a typical situation where candidates lost time due to working through a process that was rather longer than the expected method. Of those who used the cosine rule, some failed to remember the formula properly and many failed to give the answer to 2 significant figures as required.

A large number of candidates also left their answer as 4.465... which is a^2 , in spite of writing the formula correctly, and so lost the last accuracy mark for failing to take the square root.

Q3 (Trigonometry)

WWW. MYMathscloud.com This was attempted by a variety of methods, most leading to inaccurate values. Trial and improvement should be discouraged with this work as it is both time consuming and unnecessary. Most who obtained the first value were also able to give the second and only a very few found values in other quadrants.

O4 (Coordinate geometry of the circle)

While the vast majority of candidates were able to evaluate the distance between two points, dealing with the equation of a circle which did not have its centre at the origin was not at all well known.

O5 (Inequalities)

About a third of candidates did not understand that they had to factorise a quadratic function to proceed with the question. Most of the remainder were able to deal with the correct factorisation, but unable to complete the inequality. A common answer was x > 1 and x > -5.

Q6 (Calculus)

Some omitted the constant of integration then spuriously tried to compensate thereafter. Only a few replaced the *m* in the general equation of the line by the function of *x* given as the gradient function.

O7 (Coordinate geometry)

There were two acceptable methods. The first was to write both equations in the form y = mx + cand to comment that the coefficient of x, which is the gradient, is the same for both lines. Of those who did this a large number said that the gradient was -2x. The other method was to claim that two lines are parallel if they do not intersect and attempts to find the point of intersection by solving simultaneously would, for two parallel lines, produce an impossibility (typically 8 = 5). This is quite subtle and unfortunately we were not convinced in most cases that candidates knew this and were trying to develop this argument. They solved simultaneously (perhaps because they did not know what else to do) and then could not cope with the apparent mess into which they were getting. The gradient of the perpendicular line seemed to be well known and those who found -2 as the common gradient used $\frac{1}{2}$ as the gradient of a perpendicular line successfully to complete the question. Of those who wrote the gradient of the given lines as -2x some then wrote the gradient of a perpendicular line as $\frac{1}{2x}$. Some successfully completed the question, and so we put this down to

sloppy notation but others got themselves confused.

Q8 (Linear Programming)

www.mymathscloud.com In general this question was well done. Common errors that led to the loss of one or more marks were:

- The incorrect shading for the inequality $y \le 3x$ which not only led to the incorrect answer but encouraged candidates to shade incorrectly also the domain $y \ge 0$, shading instead the region for which $x \ge 0$.
- The drawing of the line $y = \frac{1}{3}x$
- The final answer left as (2, 6).

Q9 (Polynomials)

It was clear that answers to this question were more than usually centre-dependent, in that in some centres hardly any candidate got it right and in many centres practically every candidate obtained full marks.

Most candidates were able to justify that (x - 3) was a factor by using the factor theorem (though many did not say so, simply showing that f(3) = 0 with no comment) but a significant number of these did not seem to know the remainder theorem and obtained the answer to (i) by long division. Rather more candidates than last year gave the full solution to the equation, though some did still give x = -1, 2 as the answer.

Q10 (Intersection of line and curve)

A few candidates failed to substitute properly and their algebraic manipulation let them down. Most were able to solve their quadratic equation, however. Once again, marks were lost, often by very good candidates, by failing to read the question. In this question the y values were required as well.

Section B

Q11 (Binomial distribution)

Most candidates knew what to do but there were the expected few who failed to write terms which had consistent powers or coefficients. A surprising number worked with the probabilities 0.65 and 0.45 or even 0.25.

Q12 (Constant acceleration)

There were very few candidates who were unable to make any headway with this question. However, the constant acceleration formulae were not well known; many used u = 0 throughout and also many failed to use average speed during the sections of deceleration and acceleration. For those who used a formula requiring a time in (iii) the two marks allocated to this in the mark scheme (and on the paper) in (iv) were awarded when seen in (iii). For these candidates the allocation of marks to the sections was 1, 2, 5, 4.

A number of candidates used kilometres and some also took 100 m = 1 km. If one of these errors had been consistent throughout the question it would have been possible to treat it as a misread, but unfortunately many of these candidates used incorrect units or conversion inconsistently, dealing with it correctly in some parts but not in others.

Q13 (3-D trigonometry)

This question was possibly the best of the section B questions, perhaps because it was nearest to being part of the GCSE syllabus. In (ii) many answers were unconvincing. Candidates should be clear that when a question says "show" then no fudging or omission of working is acceptable. In this case also it was not acceptable to take an approximate value to be rounded to the given value. A handful found the wrong angle in (iii). Others used their angle in (iii) in part (v). Generally though, apart from (v), this was popular and an easy source of marks for most of the candidates. In some cases this was the only significant source of marks.

The straightforward method of answering (v) was not adopted by most candidates who chose a rather more complicated route to get to the answers. Finding AM in order to evaluate the area was accepted.

Q14 (Calculus of curves)

Better candidates had few problems and seemed to do the whole problem in a few lines. The majority were able to score full marks in (i) and (ii). Some differentiated in (iii) then stopped, others read ahead and worked out the equation of the line TM rather than the tangent. Some of the descriptions in (v) were vague, but attempts to describe what had been done in this specific case as a general process were credited.

www.mymathscioud.com

Unit Threshold Marks

Unit	Maximum Mark	Α	В	С	D	E	U
6993	100	79	67	56	45	34	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
6993	35.2	48.1	57.3	65.7	75.3	100	4381

FREE-STANDING MATHEMATICS QUALIFICATION Advanced Level ADDITIONAL MATHEMATICS

6993/01

www.mymathscloud.com

THURSDAY 14 JUNE 2007

Additional materials: Answer booklet (16 pages) Graph paper Afternoon Time: 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 100.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 7 printed pages and 1 blank page.HN/3© OCR 2007 [100/2548/O]OCR is an exempt Charity[Turn over]

Section A

- 1 Solve the inequality 3(x+2) > 2 x.
- 2 A particle moves in a straight line. Its velocity, $v \text{ m s}^{-1}$, *t* seconds after passing a point O is given by the equation

$$v = 6 + 3t^2.$$

Find the distance travelled between the times t = 1 and t = 3. [4]

3 A circle has equation $x^2 + y^2 - 4x - 6y + 3 = 0$.

Find the coordinates of the centre and the radius of the circle. [3]

4 Find all the values of x in the range $0^{\circ} < x < 360^{\circ}$ that satisfy $\sin x = -4\cos x$. [5]

5 A car is travelling along a motorway at 30 m s^{-1} . At the moment that it passes a point A the brakes are applied so that the car decelerates with constant deceleration. When it reaches a point B, where AB = 300 m, the speed of the car is 10 m s^{-1} .

Calculate

(i)	the constant deceleration,	[3]
(ii)	the time taken to travel from A to B.	[2]

- 6 Find the equation of the tangent to the curve $y = x^3 3x + 4$ at the point (2, 6). [4]
- 7 Use calculus to find the *x*-coordinate of the minimum point on the curve

$$y = x^3 - 2x^2 - 15x + 30.$$

Show your working clearly, giving the reasons for your answer. [7]

8 The figure shows the graphs of $y = 4x - x^2$ and $y = x^2 - 4x + 6$.

	(i) Use an algebraic method to find the x-coordinates of the points where the curves in	tersect.
		[3]
	(ii) Calculate the area enclosed by the two curves.	[4]
0	The points A \mathbf{P} and C have coordinates $(-1, 1)$ (5, 8) and (8, 3) respectively	
9	The points A, B and C have coordinates $(-1, 1)$, $(5, 8)$ and $(8, 5)$ respectively.	
	(i) Show that $AC = AB$.	[2]
	(ii) Write down the coordinates of M, the midpoint of BC.	[1]
	(iii) Show that the lines BC and AM are perpendicular.	[2]
	(iv) Find the equation of the line AM.	[2]

10 (i) By drawing suitable graphs on the same axes, indicate the region for which the following inequalities hold. You should shade the region which is **not** required.

$$2x + 3y \le 12$$

$$2x + y \le 8$$

$$y \ge 0$$

$$x \ge 0$$
[5]

(ii) Find the maximum value of x + 3y subject to these conditions. [2]

www.mymathscloud.com

		Mun m. M.
	4 Section B	Smathscloud.
11	(a) You are given that $f(x) = x^3 - 3x^2 - 4x$.	Som
	(i) Find the three points where the curve $y = f(x)$ cuts the x-axis.	[4]
	(ii) Sketch the graph of $y = f(x)$.	[1]
	(b) You are given that $g(x) = x^3 - 3x^2 - 4x + 12$.	
	(i) Find the remainder when $g(x)$ is divided by $(x + 1)$.	[2]
	(ii) Show that $(x - 2)$ is a factor of $g(x)$.	[1]
	(iii) Hence solve the equation $g(x) = 0$.	[4]

12 The work-force of a large company is made up of males and females in the ratio 9 : 11. One third of the male employees work part-time and one half of the female employees work part-time.

8 employees are chosen at random.

Find the probability that

(i)	all are males,	[2]
(ii)	exactly 5 are females,	[4]
(iii)	at least 2 work part-time.	[6]

www.mymathscloud.com 13 In the pyramid OABC, OA = OB = 37 cm, OC = 40 cm, CA = CB = 20 cm and AB = 24 cm. M is the midpoint of AB.

Calculate

(i)	the lengths OM and CM,	[3]
(ii)	the angle between the line OC and the plane ABC,	[4]
(iii)	the volume of the pyramid.	[5]
	1	

[The volume of a pyramid = $\frac{1}{3} \times$ base area \times height.]

[Question 14 is printed overleaf.]
www.mymathscloud.com 14 An extending ladder has two positions. In position A the length of the ladder is x metres and, when the foot of the ladder is placed 2 metres from the base of a vertical wall, the ladder reaches y metres up the wall.

In position B the ladder is extended by 0.95 metres and it reaches an extra 1.05 metres up the wall. The foot of the ladder remains 2 m from the base of the wall.

- (i) Use Pythagoras' theorem for position **A** and position **B** to write down two equations in x and y.
 - [2]

[7]

- (ii) Hence show that 2.1y = 1.9x 0.2. [3]
- (iii) Using these equations, form a quadratic equation in x. Hence find the values of *x* and *y*.

7 BLANK PAGE

www.mymathscloud.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

8

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Additional Mathematics

ADVANCED FSMQ 6993

Mark Scheme for the Unit

June 2007

6993/MS/R/07

Oxford Cambridge and RSA Examinations

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

 Telephone:
 0870 870 6622

 Facsimile:
 0870 870 6621

 E-mail:
 publications@ocr.org.uk

CONTENTS

Additional Mathematics FSMQ (6993)

MARK SCHEME FOR THE UNIT

Unit	Content	Page
6993	Additional Mathematics	1
*	Grade Thresholds	10

				mm. 2
6993	Mark Scheme			June 20
Q.	Answer	М	lark	Notes
Section	$A = \frac{3(r+2) > 2 - r}{2}$	M	11	Expand and collect
-	$\Rightarrow 3x + 6 > 2 - x$			
	$\Rightarrow 4x > -4$		1 1	Only 2 terms
	$\Rightarrow x > -1$		3	
2	$(1, 2)^2 \rightarrow (1, 2)^3 + (1, 2)^3$	М	I1 A1	lanore c
2	$v = 6 + 3t \implies s = 6t + t + c$			
	Take $s = 0$ when $t = 1 \implies c = -7$	D	M1	Either sub to find <i>c</i> or sub and subtract
	When $t = 3$, $s = 18 + 27 - 7 = 38$	A	1	from definite integral
	Alternatively:			
	$\int_{1}^{3} (c_{1}, 2, 2^{2}) dc_{2} \int_{1}^{2} (c_{1}, 2, 3^{2}) dc_{2} dc_{3} dc_{4} $	20		DM1 int A1
	$s = \int_{1}^{1} (6+3t) dt = \lfloor 6t+t \rfloor_{1}^{1} = (18+27) - (6+1) t$	= 38	4	A1
2	22.0	N/	11	Complete the square
3	$x^2 + y^2 - 4x - 6y + 3 = 0$			
	$\Rightarrow x^2 - 4x + y^2 - 6y = -3$			
	$\Rightarrow x^2 - 4x + 4 + y^2 - 6y + 9 = 4 + 9 - 3$			
	$\Rightarrow (x-2)^2 + (y-3)^2 = 10$	B'	1 1	Centre Radius
	\Rightarrow Centre (2, 3), radius $\sqrt{10}$ (≈ 3.162)		3	Accept correct
	SC: Penultimate line M1 A1			answers with no working
	S.C. Centre B1			
	Find a point on the circle and then use Pythagoras M1			
	to find radius A1			
4	$\sin x = -4\cos x \Longrightarrow \tan x = -4$	B	1	For oithor value from
	$\Rightarrow x = \pm 75.96^{\circ}$	B	I	For either value from calculator
	$\Rightarrow x = 180 - 75.96 = 104^{\circ}$	M	11 1	For method to find a
	and $x = 360 - 75.96 = 284^{\circ}$	A	1	that given on
	Alternatively		5	calculator -1 extra values
	Use of $s^2 + c^2 = 1$ M1			Ignore values
	$\Rightarrow \cos^2 x = \frac{1}{2}$			
	17			
	$\Rightarrow x = \pm 75.96^{\circ} $ A1			
	$\Rightarrow x = 180 - 75.96 = 104^{\circ}$ M1	Al		
	and $x = 360 - 75.96 = 284^{\circ}$ S.C. Graphical method $\pm 2^{\circ}$ tolerance B1 B1 S.C. Answers with no working B1 for both.	A1		

699	03	Mark Scheme			June 20	112 113 113
						nscho
5	(i)	Using $v^2 = u^2 + 2as$	M1		Got to be used!	SUD.COM
		$\Rightarrow 10^2 = 30^2 + 2a.300$	Δ1			
		$\Rightarrow 600a = -800$, , ,			
		$\Rightarrow a = 4$	A1		Ignore –ve sign.	
		$\rightarrow u = -\frac{1}{3}$		3		
	(ii)	Using $v = u + at$	M1			
		10 20 4				
		$\Rightarrow 10 = 30 - \frac{t}{3}$				
		$\Rightarrow t = 20 \times \frac{3}{2} = 15$	F1	n	From their a	
		4		2		
		Or: $s = \frac{u+v}{2}t$			This could be used	
		$\frac{2}{30+10}$			in (i) to find <i>t</i> then a	
		$\Rightarrow 300 = \frac{300 + 10}{2}t$				
		$\Rightarrow t = \frac{600}{15} = 15$				
		\rightarrow $i = \frac{10}{40}$				
6		dy 2 2 2	B1		Diff correctly	
		$\frac{1}{\mathrm{d}x} = 3x - 3$	M1		Substitute in their gradient function	
		At (2, 6) $\frac{dy}{dt} = 9 \Rightarrow y - 6 = 9(x - 2)$	DM1		Set up equation with their gradient	
		$ dx \Rightarrow y = 9x - 12 $	A1		<u><u></u></u>	
		\rightarrow y = 5x 12		4		
7		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x - 15$	M1			
		dx	M1		=0 and attempt to	
		= 0 when $3x^2 - 4x - 15 = 0$			solve	
		$\Rightarrow (3x+5)(x-5) = 0$	A1			
		$\Rightarrow x = 3, -\frac{5}{3}$				
		$d^2 v$	M1		Differentiate again	
		$\frac{dy}{dx^2} = 6x - 4$	F1		and substitute	
		When $r = 3$ $\frac{d^2 y}{d^2 y} > 0$	Λ.4			
		dx^2		7	Providing all other	
		\Rightarrow minimum $\Rightarrow x = 3$			marks earned	
		$\rightarrow x = 3$				
		N.B. Any valid method is acceptable, but not that $x = 3$ is the right hand value or that the v value is				
		lower then for the other value of <i>x</i> .				
1	1		1		1	1

					www.my	12
699	3	Mark Scheme			June 20. Na	this clos
8	(i)	$4x - x^2 = x^2 - 4x + 6$	M1		Equate and attempt to collect terms	ud.com
		$\Rightarrow 2x^2 - 8x + 6 = 0$ $\Rightarrow x^2 - 4x + 3 = 0$	M1		Solve a quadratic	
		$\Rightarrow (x-3)(x-1) = 0$	A1	3	Ans only seen - B1	
	(ii)	$\Rightarrow x = 5,1$ Area = $\int_{-3}^{3} (4x - x^2) dx - \int_{-3}^{3} (x^2 - 4x + 6) dx$	M1		Integrate	
		$= \left[2x^{2} - \frac{x^{3}}{3}\right]_{1}^{3} - \left[\frac{x^{3}}{3} - 2x^{2} + 6x\right]_{1}^{3}$	A1		All terms; condone one slip	
		$= (18-9) - (2-\frac{1}{3}) - (9-18+18) + (\frac{1}{3}-2+6)$	DM1		Substitute and subtract (even if	
		$=9-1\frac{2}{3}-9+4\frac{1}{3}=2\frac{2}{3}$	A1	4	limits wrong)	
		Alternatively:			M1 intograto	
		Area = $\int_{1}^{3} (8x - 2x^2 - 6) dx$				
		$= \left[4x^2 - \frac{2x^3}{3} - 6x \right]_1^3$			DM1 sub and sub	
		$= (36 - 18 - 18) - \left(4 - \frac{2}{3} - 6\right) = 0 - \left(-2\frac{2}{3}\right)$			A1	
		$=2\frac{2}{3}$				
9	(i)	$AB = \sqrt{(5 - 1)^{2} + (8 - 1)^{2}} = \sqrt{85}$	M1		For sight of Pythagoras used at	
		$AC = \sqrt{(8 - 1)^2 + (3 - 1)^2} = \sqrt{85}$	A1	2	least once	
	(ii)	$\mathbf{M} = \left(\frac{5+8}{2}, \frac{8+3}{2}\right) = \left(\frac{13}{2}, \frac{11}{2}\right)$	B1	1		
	(iii)	Grad BC = $\frac{8-3}{5-8} = -\frac{5}{3}$	E1		Both gradients; AM ft from their M	
		Grad AM = $\frac{\frac{11}{2} - 1}{\frac{13}{2} + 1} = \frac{\frac{9}{2}}{\frac{15}{2}} = \frac{9}{15} = \frac{3}{5}$				
		$\Rightarrow m_1.m_2 = -\frac{5}{2}.\frac{3}{5} = -1$	B1		Both and demonstration	
		Allow a geometric argument with reference to M being midpoint and the triangle isosceles.		2		
	(iv)	$y-1 = \frac{3}{2}(x+1)$	M1		Must use (-1, 1) or their g	
		$\Rightarrow 5y = 3x + 8$	A1	2	<u></u>	

Section B

					mm m	
699	3	Mark Scheme			June 20 June	Maths
Sec	tion B					Cloud.c.
11	(a)(i)	$x^{3} - 3x^{2} - 4x = 0$ $\Rightarrow x(x^{2} - 3x - 4) = 0$ $\Rightarrow x(x - 4)(x + 1) = 0$ $\Rightarrow x = 0, -1, 4$ S.C. just answers B2	M1 A1 A1 A1	4	Accept any valid method	on
	(ii)	Must have points on axes	B1	1		
	(b)(i)	Remainder theorem or long division G(-1) = 12	M1 A1	2	For sub –1	
	(ii)	g(2) = 0	B1	1	For sub $x = 2$	
	(iii)	By continued trial or by division and quadratic factorisation g(3) = 0, g(-2) = 0 $\Rightarrow x = 2, 3, -2$ S.C. just answers B2 Alternatively: By division by $(x - 2)$ and quadratic factorisation M1 $(x - 2)(x^2 - x - 6) = 0$ $\Rightarrow (x - 2)(x + 2)(x - 3) = 0$ $\Rightarrow x = 2, -2, 3.$ A1	M1 A1 A1 A1	4	3 –2 Final answer	

Mark Scheme

6993		Mark Scheme				June 20.	My Nails
12	(i)	P(All males) = $\left(\frac{9}{20}\right)^8 = 0.00168$		M1 A1	2		T.COM
	(ii)	P(5 females) = ${}^{8}C_{5} \left(\frac{9}{20}\right)^{3} \left(\frac{11}{20}\right)^{5}$ = 0.2568 \approx 0.257		M1 M1 A1 A1	4	powers coefficient 56 (could be implied)	
	(iii)	P(full-time) = $\frac{23}{40}$ (Or P(PT) = $\frac{17}{40}$) P(at least two part-time) = 1 – P(all FT) – P = $1 - \left(\frac{23}{40}\right)^8 - 8\left(\frac{23}{40}\right)^7 \left(\frac{17}{40}\right)$ = 1 – 0.0119 – 0.0706 = 0.917	(7FT,1PT)	M1 M1 A1 A1 A1	A1 6	probability 1–2correct terms Powers coefficient Ans	
		Alternatively: Add 7 terms $28\left(\frac{23}{40}\right)^{6}\left(\frac{17}{40}\right)^{2} + \dots + \left(\frac{17}{40}\right)^{8}$ $= 0.917$	M1 A1 powers A1 Coeffs A1 Ans				
		S.C. Read "At least two" as "exactly two" $28\left(\frac{23}{40}\right)^{6}\left(\frac{17}{40}\right)^{2} = 28 \times 0.00653 = 0.1828$	B1				

6993		Mark Scheme			MMM. Mynamscioud
13	(i)	Pythagoras:	M1		Correct use of Pythagoras for at
		$OM^2 = 37^2 - 12^2 \Rightarrow OM = 35$	A1		least one
		$CM^2 = 20^2 - 12^2 \Longrightarrow CM = 16$	A1		
				3	
	(ii)	Use cosine rule on triangle OCM	M1		Correct angle
		$16^2 + 40^2 - 35^2$ $3 - 50$	M1		Correct use of
		$\Rightarrow \cos C = \frac{2 \times 16 \times 40}{2 \times 16 \times 40} \Rightarrow C = 60.5^{\circ}$	A1		
		2/10/10	AT	4	Ans
	(iii)	Sight of attempt to find base area	M1	4	
	()	sight of attempt to find base area	A1		Can be implied
		Area = $\frac{1}{-1} \times 16 \times 24 = 192$			
		2	M1		
		Sight of attempt to find height			
		$h = 40\sin 60.5 = 34.8$	A1		Can be implied
		$\Rightarrow \text{Volume} = \frac{1}{3} \times 192 \times 34.8 = 2228 \approx 2230 \text{cm}^3$	A1	5	

6993 Mark Scheme					June 20. Nathscioud	
14	(i)	Apply Pythagoras to both triangles: $x^2 = y^2 + 4$ $(x + 0.95)^2 = (y + 1.05)^2 + 4$	B1 B1	2	4.00,	3
	(ii)	Subtract: $2 \times 0.95x + 0.95^2 = 2 \times 1.05y + 1.05^2$ $\Rightarrow 2.1y = 1.9x - (1.05^2 - 0.95^2)$ $\Rightarrow 2.1y = 1.9x - 0.2$ Alternatively: Multiply out one of the brackets B1 Substitute for y^2 M1 Correct result A1	M1 A1 A1	3		
	(iii)	Substitute for y: $x^{2} = \left(\frac{1.9x - 0.2}{2.1}\right)^{2} + 4$ $\Rightarrow 2.1^{2}x^{2} = 1.9^{2}x^{2} - 2 \times 0.2 \times 1.9x + 0.2^{2} + 4 \times 2.1^{2}$ $\Rightarrow 0.8x^{2} + 0.76x - 17.68 = 0$ $\Rightarrow x = \frac{-0.76 \pm \sqrt{0.76^{2} + 4 \times 0.8 \times 17.68}}{1.6} = \frac{-0.76 + 7.56}{1.6} = 4.25$ Substitute : $y = \left(\frac{1.9x - 0.2}{2.1}\right) = 3.75$ Withhold last mark if more than one answer given The quadratic in y is $20y^{2} + 21y - 360 = 0$ Integer coefficients for x equation gives $20y^{2} + 40y = 440 = 0$	M1 M1 A1 DM1 A1 F1	7	Get <i>y</i> as subject Sub expression for <i>y</i> Correct quadratic Solve Ignore other root	

FSMQ Advanced Additional Mathematics 6993 June 2007 Assessment Session

Unit Threshold Marks

Unit	Maximum Mark	Α	В	С	D	E	U
6993	100	70	60	50	40	30	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
6993	28.8	38.6	48.1	57.5	66.8	100	5500

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2007

FREE-STANDING MATHEMATICS QUALIFICATION Advanced Level

6993/01

www.mymathscioud.com

ADDITIONAL MATHEMATICS

FRIDAY 6 JUNE 2008

Afternoon Time: 2 hours

Additional materials: Answer Booklet (16 pages) Graph paper

You are not allowed a formulae booklet in this paper.

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 100.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 7 printed pages and 1 blank page.

© OCR 2008 [100/2548/0]

		mm. n
	2	My Thail
	Section A	· ISCIDUC
1	A driver of a car, initially moving at $30 \mathrm{m s^{-1}}$, applies the brakes so that the car co constant deceleration in 10 seconds.	omes to rest with
	(i) Find the value of the deceleration.	[2]
	(ii) Find the distance travelled in this time.	[2]
2	The points A and B have coordinates (0, 8) and (6, 0) respectively.	
	(i) Find the equation of the line AB.	[3]
	(ii) Find the equation of the line perpendicular to AB through its midpoint.	[4]
3	Find the points of intersection of the line $y = 5x + 13$ with the circle $x^2 + y^2 = 13$.	[5]
4	Glass marbles are produced in two colours, red and green, in the proportion 7 : 3 re a large stock of the marbles, 5 are taken at random.	espectively. From
	Find the probability that	
	(i) all 5 are red,	[2]
	(ii) exactly 3 are red.	[3]
5	(i) Use calculus to find the stationary points on the curve $y = x^3 - 3x + 1$, identification maximum and which is a minimum.	ifying which is a [6]
	(ii) Sketch the curve.	[1]
6	A speedboat accelerates from rest so that t seconds after starting its velocity, in ms ⁻	⁻¹ , is given by the

formula $v = 0.36t^2 - 0.024t^3$.

(i)	Find the acceleration at time <i>t</i> .	[3]
(ii)	Find the distance travelled in the first 10 seconds.	[4]

7 A pyramid stands on a horizontal triangular base, ABC, as shown in Fig. 7. The angles CAB and ABC are 50° and 60° respectively. The vertex, V, is directly above C with VC = 10 m. The angle which the edge VA makes with the vertical is 40° .

(i) Calculate AC.	[2]
(ii) Hence calculate AB.	[4]

- (ii) Hence calculate AB.
- It is required to solve the equation $2\cos^2 x = 5\sin x 1$. 8
 - (i) Show that this equation may be written as $2\sin^2 x + 5\sin x 3 = 0$. [2]
 - (ii) Hence solve the equation $2\cos^2 x = 5\sin x 1$ for values of x in the range $0^\circ \le x \le 360^\circ$. [4]
- The cubic equation $x^3 + ax^2 + bx 26 = 0$ has 3 positive, distinct, integer roots. 9

Find the values of *a* and *b*.

[5]

Section **B**

www.mymathscloud.com Simon and Gavin drive a distance of 140 km along a motorway, both at constant speed. Simon drives 10 at 5 km per hour faster than Gavin.

Let Gavin's speed be v km per hour.

(i) Write down expressions in terms of v for the times, in hours, taken by Gavin and Simon. [2]

Simon completes the journey in 15 minutes less than Gavin.

(ii) Explain why
$$\frac{140}{v} - \frac{140}{v+5} = \frac{1}{4}$$
 and show that this equation reduces to the equation
 $v^2 + 5v - 2800 = 0.$ [5]

- (iii) Solve this equation to find v and hence find the times taken by Simon and Gavin. Give your answers correct to the nearest minute. [5]
- The side of a fairground slide is in the shaded shape as shown in Fig. 11. Units are metres. 11

Fig. 11

The curve has equation $y = \lambda x^2$.

T has coordinates (4, 2). The line BT is a tangent to the curve at T. It meets the x-axis at the point B.

(i) Find the value of
$$\lambda$$
. [1]

(ii) Find the equation of the tangent BT and hence find the coordinates of the point B. [6]

[5]

(iii) Find the area of the shaded portion of the graph.

12 A furniture manufacturer produces tables and chairs.

In each week the following constraints apply.

- www.mymainscloud.com • There are 24 workers, each working for 40 hours (i.e. there are 960 worker-hours available).
- There is a maximum of $\pounds 1800$ available for the purchase of materials. .
- Each table requires £30 worth of materials and 12 worker-hours. •
- . Each chair requires £10 worth of materials and 6 worker-hours.
- It is necessary to make at least 3 times as many chairs as tables. •

Let x be the number of tables produced each week and y be the number of chairs produced each week.

- (i) Show that the worker-hour constraint reduces to the inequality $2x + y \le 160$. [2]
- (ii) Find the inequality relating to the cost of materials constraint and the inequality relating to the numbers of tables and chairs. [3]
- (iii) Plot these three inequalities on a graph, using 1 cm to represent 10 tables on the x-axis and 1 cm to represent 10 chairs on the y-axis. Indicate the region for which these inequalities hold. You should shade the region which is **not** required. [4]

When finished, each table is sold for a profit of £20 and each chair is sold for a profit of £5.

- (iv) The manufacturer wishes to maximise the profit. Explain why the objective function is given by P = 20x + 5y.[1]
- (v) Find the number of tables and chairs that should be made in order to maximise the profit. [2]

[Question 13 is printed overleaf.]

Fig. 13

- (i) Explain why $\cos \alpha = -\cos \beta$.
- (ii) Using the cosine rule in the triangle BMA, show that

$$\cos \alpha = \frac{4x^2 + a^2 - 4c^2}{4ax}.$$
 [2]

(iii) Find a similar expression for $\cos \beta$.

[1]

[2]

- (iv) Using the results in parts (i), (ii) and (iii), show that $4x^2 + a^2 = 2(c^2 + b^2)$. [5]
- (v) A triangular lawn has sides 46 m, 29 m and 27 m. Find the distance from the midpoint of the longest side to the opposite corner. [2]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

8

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Additional Mathematics

ADVANCED FSMQ 6993

Mark Scheme for the Unit

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Additional Mathematics FSMQ (6993)

MARK SCHEME FOR THE UNIT

Unit/Content	Page
6993 Additional Mathematics	4
Grade Thresholds	10

6993 Additional Mathematics

Section A

Q .		Answer	Marks	Notes
1	(i)	v = u + at with $v = 0, u = 30, t = 10$	M1	Must be used
		$\Rightarrow 10a = -30$		a = 3 or decel = -3 are
		$\Rightarrow a = -3$	A1	u = 5 of decei = 5 are wrong
		Deceleration is 3 ms ⁻²	2	
	(ii)	E.g. $v^2 = u^2 + 2as$ with $v = 0, u = 30, a = -3$	M1	
		$\Rightarrow 6s = 900$		
		$\Rightarrow s = 150$		
		Distance is 150 m	A1	
		Alternatives:	2	Allow alternatives
		$\left(\frac{u+v}{v} \right)_{t}$ with $u = 0$ $u = 20$ $t = 10$		
		$S = \left(\frac{1}{2}\right)^{l}$ with $v = 0, u = 30, l = 10$		
		$\Rightarrow s = 15 \times 10 = 150$		
		Or:		
		$s = ut + \frac{1}{2}at^2$ with $u = 30, t = 10, a = -3$		
		$\Rightarrow s = 300 - 150 = 150$		
		Or:		
		$s = vt - \frac{1}{2}at^2$ with $v = 0, t = 10, a = -3$		
		$\Rightarrow s = 0 - (-150) = 150$		
2	(i)	$\frac{x}{x} + \frac{y}{x} = 1$	B1 soi	Gradient
		6 8	M1	Any valid method
		$\Rightarrow 4x + 3y = 24$	1411	7 my vana memoa
		Any correct equation will do.	A1 isw	In form $ax + by = c$
		Usual answer $y = -\frac{4}{3}x + 8$	3	N.B. Drawing of graph
		SC. Omission of $y = :$ give M1 A0		15 0.
	(ii)		D1 .	
		Midpoint is $(3, 4)$	BI SO1	
		Gradient is $\frac{3}{4}$	E1	-ve reciprocal of their
		\rightarrow equation is $1 + \frac{3}{2} (x + 2)$	M1	gradient Use <i>their</i> gradient plus
		\Rightarrow equation is $y-4 = -(x-3)$	1011	their midpoint
		$\Rightarrow 4y = 3x + 7$	A1	In form $ax + by = c$
		SC. Omission of $y = :$ give M1 A0	4	N.B. Drawing of graph
				1S U.

	Mark Scheme		June 20	Misths Hiscloud
	Answer	Marks	Notes	*. COD
	$x^{2} + (5x + 13)^{2} = 13$	M1	Attempt at substitution.	
	$\Rightarrow x^2 + 25x^2 + 130x + 169 - 13 = 0$	Al soi	Expansion of $(5r + 13)^2$	
	$\Rightarrow 26x^2 + 130x + 156 = 0$	AT 501		
	$\Rightarrow x^2 + 5x + 6 = 0$			
	\Rightarrow $(x+2)(x+3) = 0 \Rightarrow x = -2, -3$	M1	Solve 3 term quadratic	
	\Rightarrow y = 3, -2	A1	Either both <i>x</i> or one	
	\Rightarrow Points of intersection (-2,3),(-3,-2)	A1	pair Either both y or other	
	SC: For each pair obtained from accurate graph or table of values, or trial, B1	5	pair	
(i)	$\left(\frac{7}{10}\right)^5 \approx 0.168$	B1 soi B1 2	<i>p</i> and power Ans	
(ii)	$\begin{pmatrix} 5\\ 3 \end{pmatrix} \left(\frac{7}{10}\right)^3 \left(\frac{3}{10}\right)^2 \approx 0.3087$ <i>Allow 3, 4 or 5 sig figs in both parts</i> <i>Annly trasf or the otherwise</i> 0 if more than one term	B1 soi B1 B1 3	coeff powers mult (<i>p</i> correct) ans	
(i)	$y = x^3 - 3x + 1 \Longrightarrow \frac{dy}{dx} = 3x^2 - 3$	B1 M1	Correct derivative Setting their derivative	
	$\frac{dy}{dx} = 0 \text{ when } x = \pm 1, \text{ giving } (1, -1) \text{ and } (-1, 3)$ $\frac{d^2y}{dx^2} = 6x; \text{ when } x = 1, \frac{d^2y}{dx^2} > 0$	A1 A1 M1	Both x or one pair Both y or other pair (y values could be seen in (ii))	
	giving minimum at $x = 1$ when $x = -1$, $\frac{d^2 y}{dx^2} < 0$ giving maximum at $x = -1$	A1	Identify one turning point	
	Any alternative method OK.	6	Both correct	
(ii)	Curve to be consistent in (i)	E1	General shape including axes and turning points At <i>their x</i> values. (but don't worry about intercepts on the axes.) This <i>does</i> require a scale on the <i>x</i> axis.	
	(i) (i) (i)	Answer $x^2 + (5x+13)^2 = 13$ $\Rightarrow x^2 + 25x^2 + 130x + 169 - 13 = 0$ $\Rightarrow 26x^2 + 130x + 156 = 0$ $\Rightarrow x^2 + 5x + 6 = 0$ $\Rightarrow (x+2)(x+3) = 0 \Rightarrow x = -2, -3$ $\Rightarrow y = 3, -2$ \Rightarrow Points of intersection $(-2,3), (-3, -2)$ SC: For each pair obtained from accurate graph or table of values, or trial, B1(i) $\left(\frac{7}{10}\right)^5 \approx 0.168$ (ii) $\left(\frac{5}{3}\right)\left(\frac{7}{10}\right)^3\left(\frac{3}{10}\right)^2 \approx 0.3087$ Apply tmsf or tfsf otherwise.(ii) $\left(\frac{5}{3}\right)\left(\frac{7}{10}\right)^3\left(\frac{3}{10}\right)^2 \approx 0.3087$ Man one than one th	AnswerMarks $x^2 + (5x+13)^2 = 13$ M1 $\Rightarrow x^2 + 25x^2 + 130x + 169 - 13 = 0$ A1 soi $\Rightarrow 26x^2 + 130x + 156 = 0$ $\Rightarrow x^2 + 5x + 6 = 0$ $\Rightarrow (x+2)(x+3) = 0 \Rightarrow x = -2, -3$ M1 $\Rightarrow y = 3, -2$ A1 $\Rightarrow Points of intersection (-2,3), (-3, -2)$ A1SC: For each pair obtained from accurate graph or table of values, or trial, B1B1 soi(i) $\left(\frac{7}{10}\right)^5 \approx 0.168$ B1 soi(ii) $\left(\frac{5}{3}\right)\left(\frac{7}{10}\right)^3\left(\frac{3}{10}\right)^2 \approx 0.3087$ O if more than one termAllow 3, 4 or 5 sig figs in both partsD if more than one term $Apply tmsf or tfsf otherwise.$ M1(ii) $y = x^3 - 3x + 1 \Rightarrow \frac{dy}{dx} = 3x^2 - 3$ B1(ii) $y = x^3 - 3x + 1 \Rightarrow \frac{dy}{dx} = 3x^2 - 3$ M1 $\frac{d^2y}{dx^2} = 6x$; when $x = 1, \frac{d^2y}{dx^2} > 0$ M1giving minimum at $x = 1$ M1A1Any alternative method OK.6(iii) $\left(\frac{4^2y}{dx^2} < 0 giving maximum at x = -1Any alternative method OK.1$	AnswerMarksNotes $x^2 + (5x + 13)^2 = 13$ M1Attempt at substitution. $\Rightarrow x^2 + 25x^2 + 130x + 169 - 13 = 0$ $\Rightarrow x^2 + 25x^2 + 130x + 169 - 13 = 0$ $\Rightarrow x^2 + 5x + 6 = 0$ $\Rightarrow (x + 2)(x + 3) = 0 \Rightarrow x = -2, -3$ M1Solve 3 term quadratic $\Rightarrow y = 3, -2$ $\Rightarrow 0$ sits of intersection $(-2,3), (-3, -2)$ A1Either both x or one pairSC: For each pair obtained from accurate graph or table of values, or trial, B1B1 soi p and power (i) $\left(\frac{7}{10}\right)^3 (3, 0)^2 \approx 0.3087$ 0 if more than one leftB1 soi (j) $\left(\frac{5}{3}\right)\left(\frac{7}{10}, 0^3\left(\frac{3}{4}\right)^2 \approx 0.3087$ 0 if more than one left $Apply tms for fifs otherwise.0 if more than one dataB1 soi(i)y = x^3 - 3x + 1 \Rightarrow \frac{dy}{dx} = 3x^2 - 3B1(i)y = x^3 - 3x + 1 \Rightarrow \frac{dy}{dx} = 3x^2 - 3B1(i)y = x^3 - 3x + 1 \Rightarrow \frac{dy}{dx^2} > 0B1 soi\frac{d^2 y}{dx^2} = 6x; when x = 1, \frac{d^2 y}{dx^2} > 0B1y = x^3 - 3x^2 + 3, \frac{d^2 y}{dx^2} < 0B1y = x^3 - 3x^2 + 3, \frac{d^2 y}{dx^2} < 0B1\frac{d^2 y}{dx^2} = 6x; when x = 1, \frac{d^2 y}{dx^2} > 0B1\frac{d^2 y}{dx^2} = 6x; when x = 1, \frac{d^2 y}{dx^2} > 0Correct derivativex + 1, \frac{d^2 y}{dx^2} < 0x + 1, \frac{d^2 y}{dx^2} < 0$

6993		Mark Scheme		June 20	MA ANSIIS
Q.		Answer	Marks	Notes	
6	(i)	dv dv dv dv dv dv dv dv	M1	Diffn	1
		$a = \frac{1}{dt} = 0.72t - 0.072t^2$	A1	Each term	
			A1		
			3		
	(ii)	10 (2 2 2) $[-2, -2, -2]$	M1	Int the given fn	
		$s = \int (0.36t^2 - 0.024t^3) dt = \int (0.12t^3 - 0.006t^4) dt$	A1	Both terms	
			M1	Deal with def.int	
		=120-60=60 m	A1		
			4		
		N.B. Watch $s = \left(\frac{0+12}{2}\right) 10 = 60$			
7	(i)	AC	B1	Tan function	-
-	(-)	$\frac{AC}{VC}$ = tan 40 \Rightarrow AC = 10 tan 40 = 8.39 m	B1	Correct	
		VC	2		
		All forms for AC acceptable. $10 \sin 40 = 10$			
		i.e. $AC = \frac{10 \sin 40}{10} = \frac{10}{10}$			
	(••)	1000000000000000000000000000000000000	D1		-
	(11)	Angle $C = 180 - 50 - 60 = 70$	BI		
		$\rightarrow AB - AC$		To find AB	
		\vec{s} sin C \vec{s} sin B	F I		
		$\Rightarrow AB = 8.39 \times \frac{\sin 70}{\sin 60} = 9.10 \text{ m}$	A1	Must be 3 s.f.	
8	(i)	$2(1 \sin^2 x)$ 5 cin x 1	M1	Use of nythag to	-
Ū	(1)	$2(1-\sin x) = 5\sin x - 1$	1011	$change cos^2$	
		$\Rightarrow 2\sin^2 x + 5\sin x - 3 = 0$	A1	All working -	
			2	answer given	
	(ii)	$(2\sin x - 1)(\sin x + 3) = 0$	M1	Solve quad in $\sin x$ or	-
	, í			s etc	
		$\Rightarrow \sin x = \frac{1}{2}$	A1		
		2		¹ / ₂ seen	
		$\Rightarrow x = 30^{\circ}, 150^{\circ}$	A1		
			F1	30 seen	
			4	180 – ans	
		SC. $\sin x =\Rightarrow x = 210,330$ M1 A0 A0 F1		(only one extra angle)	
9		$\frac{-}{3}$ roots are 1 2 13 – allow +1 +2 +13	B1 soi		-
-		Equation is $(x - 1)(x - 2)(x - 13) = 0$	B1	Factor form. Condone	
				$n_0 = 0$	
		Giving $x^3 - 16x^2 + 41x - 26 = 0$	M1	Expand to give cubic	
		i.e. $a = -16$, $b = 41$	A1 A1		
		(Can be seen in cubic.	isw		
			5		
		Alternative method.			
		$f(1) = 0 \Longrightarrow a + b = 25$ B1			
		$f(2) = 0 \Longrightarrow 4a + 2b = 18$ B1			
		Solve to give a and b M1 A1, A1			

Mark Scheme

Section B

699:	3	Mark Scheme		June 20	AL 14305
Sect	tion B				is cloud
Q.		Answer	Marks	Notes	
10	(i)	$\frac{140}{v}, \frac{140}{v+5}$	B1 B1 2		
	(ii)	Gavin's time minus Simon's time is 15 mins = $\frac{1}{4}$ hr $\Rightarrow \frac{140}{v} - \frac{140}{v+5} = \frac{1}{4}$ $\Rightarrow 4(140(v+5) - 140v) = v(v+5)$ $\Rightarrow 2800 = v(v+5) \Rightarrow v^2 + 5v - 2800 = 0$	B1 B1 M1 A1 soi A1 5	¹ / ₄ hr Subtract Clear fractions 700	
	(iii)	$v = \frac{-5 \pm \sqrt{25 + 4 \times 2800}}{2} \approx 50.47 \text{ or } 50.5$ $\Rightarrow \text{Gavin: } 2.77 \text{ hrs, Simon } 2.52 \text{ hrs}$ $\Rightarrow \text{Gavin takes } 2 \text{ hrs } 46 \text{ mins (166 mins)}$ Simon takes 2 hrs 31 mins (151 mins) $\mathbf{SC} \text{ For } v = 50 \Rightarrow 168, 153 \text{ give full marks but -1}$ tfsf	M1 A1 M1 A1 F1 5	Solve in decimals (ignore anything else) Convert (only one needs to be seen) Or give B1 for both in decimals This is for one 15 less than the other	

Q .		Answer	Marks	Notes
11	(i)	$2 = 16\lambda \implies \lambda = \frac{1}{2}$	B1	
		$2 - 10\lambda \Rightarrow \lambda - \frac{8}{8}$	1	
	(ii)	$dy = \frac{1}{2}x = x$	E1	Correct derivative from
		$\frac{1}{dx} = \frac{1}{8} \cdot \frac{2x}{4} = \frac{1}{4}$		their λ or leaving it in
		dv	M1	
		When $x = 4$, $\frac{dy}{dx} = 1$	A1	Sub $x = 4$
		ů.		
		\Rightarrow Tangent at T is $y - 2 = I(x - 4)$	DMI	
		$\Rightarrow y = x - 2$	Al	(numeric gradient to
		When $y = 0$, $x = 2$	A 1	give tangent)
		$S_{0} \operatorname{Pig}(2, 0)$	AI	
	<i>(</i> 11)	50 B IS (2, 0)	0	T /
	(iii)	$4 x^2 x^2 x^3$	MI	Int.
		Area under curve = $\int \frac{1}{8} dx = \left \frac{1}{24} \right _{1}$	AI	Function
			D1	
		Area of triangle = 2	DI M1	Sub limits for int and
		$\begin{bmatrix} x^3 \end{bmatrix}^4$ $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	IVII	subtract triangle
		Shaded area = $\left \frac{\pi}{24}\right - 2 = 2\frac{\pi}{3} - 2 = \frac{\pi}{3}$	A 1	subtract triangle
			A1 5	
		N.B. Area under (curve – line) from 0 to 4 M1	5	
		Alonly		

699	3	Mark Scheme		June 20	ML NSINS
0.		Answer	Marks	Notes	Y.COL
12	(i)	Worker hours for tables = $12x$ Worker hours for chairs = $6y$ $\Rightarrow 12x + 6y \le 24 \times 40 = 960 \Rightarrow 2x + y \le 160$	M1 A1	Must see 12 <i>x</i> and 6 <i>y</i>	m
	(ii)	$30x + 10y \le 1800$ $(\Rightarrow 3x + y \le 180)$ $y \ge 3x$	M1 A1 B1 3	Does not have to be simplified	
	(111)	N.B. Intercepts on axis must be seen N.B. Ignore < instead of \leq	B1 B1 E1 E1	Each line For $y \ge 3x$ Must be a region including the y axis as boundary	
	(iv)	We wish to maximise the profit. Profit per table = 20, profit per chair = 5 i.e. $P = 20x + 5y$	B1 1	Something that connects 20 with <i>x</i>	
	(v)	Greatest profit will occur where the lines $y = 3x$ and $3x + y = 180$ intersect. This is at (30, 90). Allow even if shading for $y \ge 3x$ is wrong. SC: Trying all corners without the corect answers B1 SC: Drawing an O.F. line without the right answer B1	B1 B1 2	30 ± 2 90 ± 2 But answers must be integers.	

6993	}	Mark Scheme			June 20. Dains	Alatis Coloud
13	(i)	Angles on straight line means $\alpha = 180 - \beta$	B1		Must make reference to the figure of the	t.Com
		And $\cos(180 - \beta) = -\cos\beta$	B1	2	question	
	(ii)	$\cos \alpha = \frac{x^{2} + (a/2)^{2} - c^{2}}{2 \cdot (a/2)x}$	M1		Correct cosine formula. Condone missing brackets.	
		$=\frac{x^{2}+\frac{1}{4}a^{2}-c^{2}}{ax}=\frac{4x^{2}+a^{2}-4c^{2}}{4ax}$	A1	2		
	(iii)	$\cos\beta = \frac{4x^2 + a^2 - 4b^2}{4ax}$	B1	1		
		N.B. also $-\frac{4x^2 + a^2 - 4c^2}{4ax}$				
	(iv)	$\frac{4x^2 + a^2 - 4b^2}{4ax} = -\frac{4x^2 + a^2 - 4c^2}{4ax}$	M1 M1		Use of (i), (ii) and (iii) Clear fractions	
		$\Rightarrow 4x^{2} + a^{2} - 4b^{2} = -(4x^{2} + a^{2} - 4c^{2})$	A1			
		$\Rightarrow 4x^{2} + a^{2} - 4b^{2} = -4x^{2} - a^{2} + 4c^{2}$ $\Rightarrow 8x^{2} + 2a^{2} = 4(b^{2} + c^{2})$	M1		Simplify	
		$\Rightarrow 4x^2 + a^2 = 2(b^2 + c^2)$	A1	5		
	(v)	a = 46, b = 29, c = 27	M1		Can be substituted in	
		gives $4x^2 + 46^2 = 2(29^2 + 27^2)$ gives $x^2 = 256$ i.e. $x = 16$	A1	2	any order	
		S.C. Use of cosine formula in large triangle to get an angle (C = 36.2, B = 33.4) Then use of cosine formula in small triangle to get $x = 16$ M1, A1 only if the answer is 16.				
		SC: Scale drawing gets 0.				

Grade Thresholds

FSMQ Advanced Mathematics 6993

June 2008 Assessment Series

Unit Threshold Marks

Unit	Maximum Mark	Α	В	С	D	E	U
6993	100	68	58	48	38	29	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
6993	26.4	36.7	46.5	56.0	64.7	100	7261

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

FREE-STANDING MATHEMATICS QUALIFICATION ADVANCED LEVEL

ADDITIONAL MATHEMATICS

6993

www.mymathscloud.com

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 16 page Answer Booklet
- Graph paper

Other Materials Required: None

Friday 5 June 2009 Afternoon

Duration: 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 100.
- This document consists of 8 pages. Any blank pages are indicated.

Formulae Sheet: 6993 Additional Mathematics

In any triangle *ABC* Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

www.mymathscloud.com

Binomial expansion

When *n* is a positive integer

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

where

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

3

Section A

	mm	14
	3	math
	Section A	ISCIOUX
1	The angle θ is greater than 90° and less than 360° and $\cos \theta = \frac{2}{3}$. Find the exact value of $\tan \theta$.	[3] ^{3, CO} M
2	Find the equation of the normal to the curve $y = x^3 + 5x - 7$ at the point $(1, -1)$.	[5]
3	A is the point $(1, 5)$ and C is the point $(3, p)$.	
	(i) Find the equation of the line through A which is parallel to the line $2x + 5y = 7$.	[2]
	(ii) This line also passes through the point C. Find the value of <i>p</i> .	[2]
4	AB is a diameter of a circle, where A is (1, 1) and B is (5, 3).	
	Find	
	(i) the exact length of AB,	[2]
	(ii) the coordinates of the midpoint of AB,	[1]
	(iii) the equation of the circle.	[3]

- Parcels slide down a ramp. Due to resistance the deceleration is 0.25 m s^{-2} . 5
 - (i) One parcel is given an initial velocity of 2 m s^{-1} . Find the distance travelled before the parcel comes to rest. [3]
 - (ii) A second parcel is given an initial velocity of 3 m s^{-1} and takes 4 seconds to reach the bottom of the ramp. Find the length of the ramp. [3]
- The gradient function of a curve is given by $\frac{dy}{dx} = 1 4x + 3x^2$. 6

Find the equation of the curve given that it passes through the point (2, 6). [4]

© OCR 2009

В

С

В

60

Not to scale

Not to scale

7 The course of a cross-country race is in the shape of a triangle ABC. AB = 8 km, BC = 3 km and angle ABC = 60° .

- (i) Calculate the distance AC and hence the total length of the course.
- (ii) The organisers extend the course so that AC = 9 km.

Calculate the angle BCA.

8 Calculate the *x*-coordinates of the points of intersection of the line y = 2x + 11 and the curve $y = x^2 - x + 5$. Give your answers correct to 2 decimal places. [5]

[4]

[3]

9	5 A car accelerates from rest. At time t seconds, its acceleration is given by $a = 4 - 0.2t$ m t = 20.	WW. Ny Mains on s ⁻² unt. Cloud. Co.
	(i) Find the velocity after 5 seconds.	[3]
	(ii) What is happening to the velocity at $t = 20$?	[1]
	(iii) Find the distance travelled in the first 20 seconds.	[3]
10	(i) Illustrate on one graph the following three inequalities.	

$$y \ge x - 1$$
$$x \ge 2$$
$$2x + y \ge 8$$

[4] Draw suitable boundaries and shade areas that are **excluded**.

(ii) Write down the minimum value of y in this region.

[1]

Section B

11 The shape ABCD below represents a leaf. The curve ABC has equation $y = -x^2 + 8x - 9$. The curve ADC has equation $y = x^2 - 6x + 11$.

- (i) Find algebraically the coordinates of A and C, the points where the curves intersect. [5]
- (ii) Find the area of the leaf.
- 12 The diagram shows a rectangle ABEF on a plane hillside which slopes at an angle of 30° to the horizontal. ABCD is a horizontal rectangle. E and F are 100 m vertically above C and D respectively. AB = DC = FE = 500 m.

AE is a straight path. From B there is a straight path which runs at right angles to AE, meeting it at G.

- (i) Find the distance BE.
 - (ii) Find the angle that the path AE makes with the horizontal. [4]
- (iii) Find the area of the triangle ABE.

Hence find the length BG.

[5]

[3]

[7]

			www.m.	12		
			7	hath taths		
13	In a	supe	rmarket chain there are a large number of employees, of whom 40% are male.	ISCIOUD		
	(a)	One Wha	One employee is chosen to undergo training. What assumption is made if 0.4 is taken to be the probability that this employee is male?			
	(b)	6 en	nployees are chosen at random to undergo training.			
		(i)	Show that $P(all 6 chosen are female) = 0.0467$, correct to 4 decimal places.	[2]		
		Find	I the probability that			
		(ii)	3 are male and 3 are female,	[4]		
		(iii)	there are more females than males chosen.	[5]		
14	(a)	(i)	On the same graph, draw sketches of the curve $y = x^3$ and the line $y = 3 - 2x$.	[2]		
		(ii)	Use your sketch to explain why the equation $x^3 + 2x - 3 = 0$ has only one root.	[1]		
	(b)	(i)	Show by differentiation that there are no stationary points on the curve $y = x^3 + 3x - 4$.	[3]		
		(ii)	Hence explain why the equation $x^3 + 3x - 4 = 0$ has only one root.	[1]		
	(c)	(i)	Use the factor theorem to find an integer root of the equation $x^3 + x - 10 = 0$.	[1]		
		(ii)	Write the equation $x^3 + x - 10 = 0$ in the form $(x - a)(x^2 + px + q) = 0$ where a, p and q values to be determined.	are [2]		
		(iii)	By considering the quadratic equation $x^2 + px + q = 0$ found in part (ii), show that the cull equation $x^3 + x - 10 = 0$ has only one root.	ibic [1]		

(d) You are given that r and s are positive numbers. What do the results in parts (a), (b) and (c) suggest about the equation $x^3 + rx - s = 0$? [1]

© OCR 2009

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

8

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Additional Mathematics

FSMQ 6993

Mark Schemes for the Units

June 2009

6993/MS/R/09

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Foundations of Advanced Mathematics FSMQ (6993)

MARKSCHEME ON THE UNIT

Unit	Page
Additional Mathematics – 6993	1
Grade Thresholds	9

Additional Mathematics – 6993

Section A

1		Pythagoras for third value:	M1	Using any means to find $\sqrt{5}$
		$c = \sqrt{5}$		Includes pegative sign
		$\Rightarrow \tan \theta = -\frac{\sqrt{3}}{2}$	AI	includes negative sign.
		Alt	3	
		$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{4}{9} = \frac{5}{9}$	M1	Use of Pythagoras
		$\Rightarrow \sin \theta = \frac{1}{3}\sqrt{5}$	A1	$\sin \theta$
		$\Rightarrow \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{5}/3}{\frac{2}/3} = -\frac{\sqrt{5}}{2}$	A1	Includes negative sign
		SC: Allow B1 for tan $\theta = -1.12$		
2		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 5$	M1	Attempt at differentiation with at least one term with
		\Rightarrow grad tangent = 8	A1	correct power
		\Rightarrow grad normal $=-\frac{1}{8}$	F1	
		$\Rightarrow y+1=-\frac{1}{8}(x-1)$	M1	Dep on use of their normal gradient and correct point
		$\Rightarrow 8y + 8 = -x + 1 \Rightarrow 8y + x + 7 = 0$	A1 5	Any acceptable form. Acceptable means three
3	(i)	2x + 5y = 2 + 25	M1	Substitute new point to
		$\Rightarrow 2x + 5y = 27$	A1	change c If put in form $v = mx + c$
			2	then $m = -0.4$
		SC: B2 from scale drawing only if absolutely		
	<i>(</i> ii)	correct When $r = 3$, $6 \pm 5y = 27$	M1	Substituting $r = 3$ into either
	(")	$\Rightarrow 5y = 21 \Rightarrow y = \frac{21}{5}$	1011	their equation from (i) or the given equation in (i)
		$\Rightarrow p = \frac{21}{5} = 4.2$	F1 2	Answer must specifically give <i>p</i>
		NB $p = 0.2$ comes from using original line. Give M1 A1 for this.		

699	3	Mark Scheme			June 20.	My Mains
4	(i)	$AB = \sqrt{(5-1)^2 + (3-1)^2}$	M1			·Cor
		$=\sqrt{4^2+2^2}$				
		$=\sqrt{20}=2\sqrt{5}$	AI	2	isw ie ignore any approx value for root.	
		NB M1 A0 for 4.47 with no sight of $\sqrt{20}$				
	(ii)	$\left(\frac{1+5}{2},\frac{1+3}{2}\right) = (3,2)$	B1	1		
	(iii)	$(x \pm a)^2 + (y \pm b)^2$ with (a,b) from (ii)	M1		Use of equation	
		$(x-a)^2 + (y-b)^2$	F1		Their midpoint	
		= 5	A1	3	cao for 5 isw ie ignore any incorrect algebra following a correct equation	
5	(i)	$v^2 = u^2 + 2as \Longrightarrow 0 = 4 - 2 \times 0.25s$	M1		Use of right formula(e)	
			A1		Substitution	
		$\Rightarrow s = 8$ Distance travelled = 8 m	A1	3	Answer	
		If t is found first then M1 for any correct equations that lead to finding s Careful also of $4 = 0 + \frac{1}{2}s$, this could be 3 if quoted formula is right. Also of $0 = 4 + \frac{1}{2}s \Rightarrow s = -8$ Both of these M1 for formula only				
	(ii)	$s = ut + \frac{1}{2}at^{2} = s = 3 \times 4 - \frac{1}{2} \times 0.25 \times 16$ = 12 - 2 = 10 Length of ramp = 10 m	M1 A1 A1	3		
6		NB Anything that uses $v = 0$ is M0				
		$\frac{dy}{dx} = 1 - 4x + 3x^2$	M1		For integrating - increase in power of one in at least two terms	
		$\Rightarrow (y =)x - 2x + x^{-}(+c)$ Through (2, 6)	M1		Attempt to find c	
		$\Rightarrow 6 = 2 - 8 + 8 + c \Rightarrow c = 4$			· · · · · · · · · · · · · · · · · · ·	
		$\Rightarrow y = x - 2x^2 + x^3 + 4$	A1	4	Must be an equation	

699	03	Mark Scheme		hun myng June 20	My Mains
7	(i)	$AC^2 = 8^2 + 3^2 - 2.8.3.\cos 60$	M1	Use of formula	Y.COM
		=73-24=49	A1		
		$\Rightarrow AC = 7$	A1	AC	
		\Rightarrow Total distance = 18 km	F1	Total distance	
			4		-
	(ii)	$\frac{\sin BCA}{8} = \frac{\sin 60}{9}$	M1		
		$\Rightarrow \sin BCA = \frac{8}{9} \times \sin 60 (= 0.7698)$	A1		
		\Rightarrow BCA = 50.3 ^o	A1 3		
		Alternative Scheme:			
		Use of cosine formula twice $\Rightarrow PC = 0.74$			
		$\Rightarrow BC = 50.3^{\circ}$	A1 A1		
8		$2x+11 = x^2 - x + 5$	M1	Substitute	-
		$\Rightarrow x^2 - 3x - 6 (= 0)$	A1	Quadratic	
		$\Rightarrow x = \frac{3 \pm \sqrt{9 + 24}}{2} = \frac{3 \pm \sqrt{33}}{2} = 4.37 \text{ or } -1.37$	M1 A1 A1 5	Solve Correct substitution Both answers Ignore values for y	
		Alternative Scheme 1 (relates to last 3 marks)			
		Completion of square: $(x-1.5)^2 = k$	M1		
		$x - 1.5 = \pm \sqrt{8.25}$	A1	Must contain ±	
		$\Rightarrow x = 4.37 \text{ or } -1.37$	A1	Must be 2 dp	
		Alternative Scheme 2: Only 2 marks from last 3 Solving their quadratic by T&I Both roots	M1 A1		
		Alternative Scheme 3. Only 4 marks Roots with no working: B2 each	B2,2		
		Alternative Scheme 4. Only 4 marks Finding a root from the original equations = one of them Finding the second root = the other	M1 A1 M1 A1		
		Alternative scheme 5. Eliminate x. Gives $y^2 - 28y + 163 = 0$ Gives $y = 19.74$ and 8.26 leading to x values	M1 A1 M1 A1 A1 A1	Eliminate x Quadratic Solve Both y values Both x values	
		NB Attempt to solve by graph - M0			

699	3	Mark Scheme		June 20. Daths	ANSINS COUCY
9	(i)	a = 4 - 0.2t	M1	Integrate (increase of power of one in at least one term)	Y.Con.
		$\Rightarrow v = 4t - 0.1t^{2}$ $\Rightarrow v_{2} = 20 - 2.5 = 17.5$	A1	Ignore <i>c</i>	
		Velocity is 17.5 m s ^{-1}	A1 3		
	(ii)	At $t = 20$, $a = 0$ ie Maximum velocity	B1 1		
	(iii)	$v = 4t - 0.1t^2$	M1	Integrate their <i>v</i> from (i) (Increase in power of one term)	
		$\Rightarrow s = \int_{0}^{20} 4t - 0.1t^{2} dt = \left[2t^{2} - 0.1\frac{t^{3}}{3}\right]_{0}^{20}$	A1	Ignore <i>c</i>	
		$= 2 \times 400 - 0.1 \times \frac{8000}{3} = 533.3 = 533$	A1 3	Allow exact answer or 3sf	
10	(i)	Distance dravened – 555 m	B2,1 B2,1	Lines, -1 each error Shading, -1 each error Correct side of line. ft if gradient is the same sign.	
	(ii)	<i>y</i> = 2	E1 1	ft their graph	

Section B

				www. m. m.	
699)3	Mark Scheme		June 20 June 1	5
Sec	ction B			·scloud.	, CO
11	(i)	$-x^2 + 8x - 9 = x^2 - 6x + 11$	M1	Equate	UM
		$\Rightarrow 2x^2 - 14x + 20 = 0$	A1	Quadratic	
		$\Rightarrow x^2 - 7x + 10 = 0$			
		$\Rightarrow (x-5)(x-2) = 0$	M1	Solve: Factorisation	
		$\Rightarrow x = 2, 5$	A1	needs 2 numbers to multiply to their	
		Substitute: $x = 2 \implies y = 4 - 12 + 11 = 3$		constant	
		$x = 5 \Longrightarrow y = 25 - 30 + 11 = 6$	A1 5	Or one pair, e.g. (2,3) or (5,6)	
		Alternative scheme:			
		Completion of square: $(x-3.5)^2 = k$	MI		
		$x - 3.5 = \pm \sqrt{2.25}$	A 1		
		$\Rightarrow x = 5 \text{ or } 2$	AI		
		$\Rightarrow y = 6 \text{ or } 3$	A1		
	(ii)	$A = \int_{2}^{5} (y_1 - y_2) dx = \int_{2}^{5} (-2x^2 + 14x - 20) dx$	M1	Int between curves	
		$= \left[-\frac{2x^3}{3} + 7x^2 - 20x \right]_2^5$	A1 M1	± Correct expression Integrate their function (not if they	
		$= \left(-\frac{2 \times 125}{3} + 7 \times 25 - 100\right) - \left(-\frac{16}{3} + 28 - 40\right)$	A2	divide by 2)	
		$= \left(-\frac{250}{3} + 75\right) - \left(-\frac{16}{3} - 12\right) = -\frac{234}{3} + 87 = 87 - 78 = 9$	M1 A1 7	All terms, -1 for each error Sub into integral Answer	
		Alternative scheme:	N/1		
		$A = \int_{2}^{3} \left(-x^{2} + 8x - 9 \right) dx - \int_{2}^{3} \left(x^{2} - 6x + 11 \right) dx$	M1 M1	integrals Integrate either	
		$= \left[-\frac{x^3}{3} + 4x^2 - 9x \right]_2^5 - \left[\frac{x^3}{3} - 3x^2 + 11x \right]_2^5$	A1 A1	All terms of y_1 All terms of y_2	
		$= \left(\left(-\frac{125}{3} + 100 - 45 \right) - \left(-\frac{8}{3} + 16 - 18 \right) \right)$	MI	Substitute into either integral	
		$-\left(\left(\frac{125}{3} - 75 + 55\right) - \left(\frac{8}{3} - 12 + 22\right)\right)$	A1	For 18 or 9	
		$= \left(13\frac{1}{3} - \left(-4\frac{2}{3}\right)\right) - \left(21\frac{2}{3} - 12\frac{2}{3}\right) = 18 - 9$ $= 9$	A1	Final answer	
		SC $A = \int (y_1 + y_2) dx$ M1 integrate and M1 sub only			

699	3	Mark Scheme		hun myns	My Mains
12	(i)	$\frac{100}{BE} = \sin 30$ $\Rightarrow BE = \frac{100}{\sin 30} = 200 \text{ m}$	M1 A1 A1	Fraction right way up Correct expression for BE	Y.COM
			3	Or B3 if the special triangle is noticed.	
		Alternative scheme: $\frac{100}{BC} = \tan 30 \Rightarrow BC = \frac{100}{\tan 30} = 173.2$ $BE = \sqrt{100^2 + 173.2^2} = 200$	M1 A1	Ratio and Pythagoras	
	(ii)	AE by Pythagoras:	M1	Allow not exact	
	(,	$AE = \sqrt{500^2 + 200^2} = 100\sqrt{29} = 538.5$	Al	soi	
		$\sin A = \frac{100}{538.5}$	M1		
		$\Rightarrow A = 10.7^{\circ}$	A1 4		
		Alternative Scheme: BC = $\sqrt{30000} \approx 173.2 \implies \Delta C = \sqrt{280000} \approx 529.2$	M1		
		$\Rightarrow A = \tan^{-1} \frac{100}{\sqrt{280000}} = 10.7^{\circ}$	A1 M1 A1		
		NB $A = 10.9^{\circ}$ comes from $\sin^{-1} \frac{100}{\sqrt{280000}}$			
	(iii)	Area = $\frac{1}{2} \times 500 \times$ their BE	M1		
		= 50 000	A1		
		Area = $\frac{1}{2} \times BG \times$ their AE	M1		
		$\Rightarrow BG = \frac{2 \times \text{their area}}{\text{their AE}} = 185.7 \approx 186 \text{ m}$	A1 A1 5		
		Alternative Scheme: Find angle A or E	M1		
		Then $\frac{BG}{500} = \sin A \Rightarrow BG = 186 \text{ m}$	A1 A1		
		ie maximum 3 marks. The answer is found, but the question says "Hence" and this is "otherwise".			
		NB If area is attempted but not used then give M1 A1. If area is found after BG is found then do not mark it.			

Mark Scheme

					mm	3
699	3	Mark Scheme	June 20. June	Math		
		In all parts of this question allow answers to 3sf or 4 dp				40
13	(a)	The selection is random. Allow anything that implies equal chance of selection	B1	1		
	(b)(i)	P(all are female) = 0.6^{6} (= 0.046656) = 0.0467	M1 A1	2	Sight of 0.6 ⁶ Must be 3 sf	
	(ii)	P(3 of each) = Bin coeff × $0.6^3 \times 0.4^3$ = 20 × $0.6^3 \times 0.4^3$ = 0.2765 or 0.276	M1 A1 A1 A1		One term with binomial coeff 20 (may be implied) Powers (may be implied)	
	(iii)	P(more females than males) = 6, 0 or 5,1 or 4,2 = $0.6^{6} + 6 \times 0.6^{5} \times 0.4 + 15 \times 0.6^{4} \times 0.4^{2}$ = $0.04666 + 0.1866 + 0.3110$ = 0.5443 Allow 0.544, 0.545, 0.5444	M1 B1 B1 B1 A1	5	Add 3 terms Binomial coefficients correct in at least two terms Powers correct in at least two terms At least 2 terms correct.	
		Alternative scheme: P(more females than males) = 1 - P(more males than females <i>or</i> equal numbers) = 1 - ($0.4^{6}+6\times0.4^{5}\times0.6+15\times0.4^{4}\times0.6^{2}+20\times0.4^{3}\times0.6^{3}$ = 1 - ($0.0041 + 0.0369 + 0.1382 + 0.2765$) = 0.5443 The terms are: 0.0467, 0.1866, 0.3110, 0.2765, 0.1382, 0.0369, 0.0041	M1 B1 B1 B1 A1		Take 4 terms from 1 Binomial coeffs Powers At least 2 terms correct	
		If P(more males than females), treat as MR and -2 If $p = 0.4$ and $q = 0.6$ then MR -2 (but also 0 for (b)(i) where answer is given!)				

	_			mm. myn			
699	3	Mark Scheme	Mark Scheme				
14	(a)(i)	3	B1	Line with +ve intercepts and –ve gradient			
			B1	Curve Condone +ve gradient for cubic at origin. Must pass through the origin			
	(ii)	Can only intersect in one point.	B1 1	Allow if obviously true, even if one or both are wrong			
		NB Do not allow if the curve implies that there could be more than one root but the line has not been drawn long enough - eg if curve is quadratic					
	(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 3$	B1	Correct two terms			
		Greater than 0 for all x or attempt to solve their $\frac{dy}{dx} = 0$	M1	= 0			
		so no solution to $3x^2 + 3 = 0$	A1 3	No solution			
	(ii)	Because the curve is always increasing can only cross the x axis in one point which is the root	B1 1	There must be some reference to (b)(i)			
	(c)(i)	By trial $f(2) = 0$ Condone $(x - 2)$ is a factor	B1 1				
	(ii)	$\Rightarrow (x-2)(x^2+2x+5) = 0$	M1 A1 2	In long division at least x^2 must be seen			
	(iii)	Discriminant " $b^2 - 4ac$ " = -16 < 0 So no roots. This means that $x = 2$ is the only root. NB "Ouad does not factorise" is not good enough	B1	Depends on (ii) being correct			
	(d)	The equation will only have one root (for all r and s .)	B1 1	Ignore extra comments even if wrong			

Additional Mathematics (6993) June 2009 Assessment Series

Unit Threshold Marks

Unit	Maximum Mark	Α	В	С	D	E	U
6993	100	73	63	53	44	35	0

www.mymathscloud.com

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
6993	27.7	39.7	48.7	56.9	66.0	100	9859

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

FREE-STANDING MATHEMATICS QUALIFICATION ADVANCED LEVEL

Additional Mathematics

6993

www.mymathscloud.com

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 16 page Answer Booklet
- Graph paper

Other Materials Required: None

Tuesday 15 June 2010 Morning

Duration: 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- You are permitted to use a scientific or graphical calculator in this paper.
- You are not allowed a formulae booklet in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **100**.
- This document consists of 8 pages. Any blank pages are indicated.

Formulae Sheet: 6993 Additional Mathematics

In any triangle *ABC* Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

www.mymathscloud.com

Binomial expansion

When *n* is a positive integer

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

where

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

	mm	1
	3	Anaths)
	Section A	·SCIOUX
1	Solve the inequality $3 - x < 4(x - 1)$.	[3] ^{4.} Com
2	Expand $(1 - x)^{12}$ in ascending powers of x up to the term in x^3 , and simplify your answer.	[3]
3	The function $f(x)$ is defined by $f(x) = x^3 - 5x^2 + 2x + 8$.	
	(i) Find the remainder when $f(x)$ is divided by $(x + 1)$.	[2]
	(ii) Solve the equation $f(x) = 0$.	[3]
4	In a game 4 fair dice are thrown.	
	Calculate the probability that	
	(i) no six is thrown,	[2]
	(ii) at least 2 sixes are thrown.	[4]
5	The curve $y = x^3 - 3x^2 - 9x + 7$ has two turning points, one of which is where $x = 3$.	
	(i) Find the coordinates of the other turning point and determine whether it is a maximum minimum point.	or [5]
	(ii) Sketch the curve.	[1]

6 An aeroplane touches down at a point A on a runway, travelling at 90 m s^{-1} . It then decelerates uniformly until it reaches a speed of 6 m s^{-1} at a point B on the runway, 2016 m from A.

(i) Find the deceleration.	[3]
(ii) Find the time taken to travel from A to B.	[2]

www.mymathscloud.com

- 7 It is required to solve the equation $\sin \theta \cos \theta = \frac{1}{4}$.
 - (i) Show that $\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{1}{\sin\theta\cos\theta}$.
 - (ii) Hence show that the equation $\sin \theta \cos \theta = \frac{1}{4}$ is equivalent to $\tan \theta + \frac{1}{\tan \theta} = 4$. [2]
 - (iii) By expressing this equation as a quadratic equation in *t*, where $t = \tan \theta$, find the two values of θ , in the range $0^{\circ} \le \theta \le 180^{\circ}$, that satisfy the equation. [4]
- 8 A train moves between two stations, taking 5 minutes for the journey. The velocity of the train may be modelled by the equation $v = 60(t^4 - 10t^3 + 25t^2)$ where v is measured in metres per minute and t is measured in minutes.

Calculate the distance between the two stations. [5]

- **9** The diameter of a circle is PQ, where P and Q are the points (1, 3) and (15, 1) respectively.
 - (i) Find the centre of the circle. [2]
 - (ii) Show that the radius of the circle is $5\sqrt{2}$. [2]
 - (iii) Hence find the equation of the circle in the form $x^2 + y^2 + ax + by + c = 0.$ [2]

10 John and Paul are carrying out an experiment.

The table shows their results for *x* and *y*.

x	0	2	3	4
У	4	0	0.25	0

Paul proposes that the relationship should be modelled by y = k(x-2)(x-4). This is shown in Fig. 10.

(i) Find the value of k for which the points (0, 4), (2, 0) and (4, 0) satisfy this equation. [2] John proposes a different model, using $y = c(x-2)^2(x-4)$.

- (ii) Find the value of c for which the points (0, 4), (2, 0) and (4, 0) satisfy this equation. [2]
- (iii) Which is the better model for John and Paul's results? Give a reason for your answer. [2]

www.mymathscloud.com

Section B

11 Michael is at a point A and the base of a church tower is at a point F, as shown in Fig. 11. He measures the bearing of the tower to be 060°.

Michael walks 100 metres due North to the point B from where he measures the bearing of F to be 110° .

The triangle ABF is in the horizontal plane.

Fig. 11

(i) Show that $AF = 122.7 \text{ m}$, correct to 4 significant figures, and find BF.	[5]
Michael finds that the angle of elevation of the top of the tower, T, from A is 10° .	
(ii) Find the height of the tower.	[2]
C is the point on AB that is nearest to F.	

(iii) Find CF and the angle of elevation from C to the top of the tower, correct to 1 decimal place.

[5]

12 Fig. 12 shows the shape AOB that is to be made from card. B is the point (5, 0) and OB is part of the curve with equation $y = 0.3x^2 - 1.5x$. The line AB is the normal to the curve at B.

7

Fig. 12

(i) Find the equation of the line AB.	[4]
The equation of the line AO is $2y + 3x = 0$.	
(ii) Find the coordinates of the point A.	[3]
(iii) Find the area of the shape AOB.	[5]

[Questions 13 and 14 are printed overleaf.]

© OCR 2010

www.mymathscloud.com

	www.n.	12
	8	Maths Aths
13	Ali and Beth make components in a factory. Ali works faster than Beth and makes 3 more components per hour. As a result he takes 2 hours less time than Beth to make 72 components.	onem. Cloud. Con
	Let <i>t</i> hours be the time that Ali takes to make 72 components.	
	(i) Write expressions for the numbers of components made per hour by Ali and by Beth.	[3]
	(ii) Hence derive the equation $3t(t+2) = 144$.	[5]
	(iii) Solve this equation to find the times that Ali and Beth take to make 72 components.	[4]
14	A firm has to transport 1500 packages to a site. It has a number of large vans which will tran 200 packages each and a number of small vans which will transport 100 packages each.	nsport
	Let <i>x</i> be the number of large vans and let <i>y</i> be the number of small vans used.	
	(i) Write down an inequality based on the number of packages transported.	[2]
	The firm needs to use at least as many small vans as large vans.	
	(ii) Write a second inequality.	[1]
	(iii) Plot these two inequalities on a graph, using 1 cm to represent one van on each axis. Indica region for which these inequalities hold. Shade the area that is not required.	te the [3]
	A large van costs £80 to complete the trip and a small van costs £60 to complete the trip.	
	(iv) Write down the objective function and hence find from your graph the number of each ty	pe of

- van that will minimise the cost, and work out that cost. [4]
- (v) What choice of vans should be made to minimise the cost if the restriction about the large and small vans is removed? Work out the cost in this case. [2]

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Advanced FSMQ

Additional Mathematics 6993

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

OCR - ADDITIONAL MATHEMATICS 6993 Marking instructions.

The total mark for the paper is 100.

Marks for method are indicated by an M. A method that is dependent on previous work is DM.

Marks for accuracy are of two kinds:

- (i) **A** mark indicates correct work only and
- (ii) **F** mark indicates that a "follow through" is allowed.

If an **M** mark is not gained then nor do any of the accuracy marks associated with it.

Marks not associated with a method are denoted \mathbf{B} , which should be treated as "correct only", and \mathbf{E} which may be wrong because of a previous error.

Marks are not divisible except as indicated. e.g. A 2,1 means that 2 are awarded for a correct answer and 1 for an answer that is only partially correct, as agreed at the meeting of Examiners.

When the method of solution is not one that has been discussed and does not fit the existing scheme then an alternative scheme should be devised which maintains the same number of M, A, F, B and E marks. You should also bring this to the attention of the Principal Examiner.

The rubric says that the norm is for answers to be given to 3 s.f. except where indicated. Where this rubric is ignored then 1 mark should be deducted once in the paper, at the point where it is first met. This should be indicated -1, TMSF or -1TFSF. Details will be discussed at the meeting of examiners.

Misreading of a question (including the candidate's own working) should normally be penalised by the loss of the relevant accuracy mark or two marks (whichever is less); but if the question is made substantially easier then further penalties may be imposed.

Sub-marks should be shown near to the relevant work. If these are individual marks then the appropriate letter should be given. Sub-marks are given in the question paper and the mark scheme. For substantially correct solutions a number of sub-marks may be combined, even up to the total mark for the question for a totally correct question. The sum of the sub-marks are then added and ringed at the end of the question. (This means that a totally correct question has the total mark written twice - once as a "sum of sub-marks" and unringed and once ringed as the total for the question.) The total mark for the paper should be given on the front page, top right and ringed.

Work that is crossed out and not replaced should be marked. If work has been crossed out and replaced then the replacement work should be marked even if it is incorrect and the crossed out work correct.

Any notation that is understandable may be used to support your marking. In particular: isw – ignore subsequent working www – without wrong working soi – seen or implied

An independent person should be used to check the summation of marks. You should add the ringed marks on the paper to check the addition and the independent checker should add the unringed marks. There is a fee paid for this checking - if you are unable to find anyone to do this work the Board and the Principal Examiner must be informed.

Please mark in red.

6993

If examiners have any doubt about the interpretation of any instructions or if any point of difficulty arises during the marking of scripts, they should communicate with the Principal Examiner.

Mark Scheme

MWW. MY MARKEN June 20. Mainschud. Com

1		3-x < 4(x-1) $\Rightarrow 3-x < 4x-4$ $\Rightarrow 7 < 5x$ $\Rightarrow x > \frac{7}{5}$	B1 B1 B1	Sight of $4x - 4$ Sight of ax and b where either $a = 5$ or $b = 7$ oe Final answer WWW
			3	
2		$=1 - \binom{12}{1}x + \binom{12}{2}x^2 - \binom{12}{3}x^3$ $= 1 - 12x + 66x^2 - 220x^3$	B1 B1 B1	Signs and powers 2 out of 3 coefficients worked out All coefficients and 1
		Ignore terms of higher power	3	
3	(i)	Remainder is $f(-1)$ = $-1 - 5 - 2 + 8 = 0$ For long division $x^3 + x^2$ in working and x^2 in quotient must be seen for M1 Or by inspection $(x + 1)(x^2 +)$ for M1	M1 A1 2	Or long division 0 must be seen or implied
	(ii)	$x^{3}-5x^{2}+2x+8=0$ $\Rightarrow (x+1)(x^{2}-6x+8)=0$ $\Rightarrow (x+1)(x-2)(x-4)=0$ $\Rightarrow x = -1, 2, 4$ Allow ans with no working Alt: Trial to find one root: $x = 2, 4$ M1, A1 $\Rightarrow x = -1, 2, 4$ A1	M1 DM1 A1 3	Factorise cubic to give $(x + 1)(ax^2 + bx + c)$ Solve their quadratic

Section A
699	93	Mark Sch	eme			June 20 June 20
4	(i)	$\left(\frac{5}{6}\right)^4 = \frac{625}{1296} = 0.4823$		M1 A1	2	Either form or 0.482 isw
	(ii)	$1 - \left(\frac{5}{6}\right)^4 - 4\left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right)$ $= 1 - \frac{625}{1296} - \frac{500}{1296} = 1 - 0.4823 - 0.38$ $= \frac{171}{1296} = \frac{19}{144} = 0.1319$	58	M1 B1 B1 A1	4	1 – 2 terms 4 soi Powers Ans in either form or 0.132
		Alt: Add three terms $6\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)^{2} + 4\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)^{3} + \left(\frac{1}{6}\right)^{4}$ $= 0.11574 + 0.01543 + 0.00077$ $= 0.1319$	M1 B1 both coeffs B1 powers A1 ans	- 1		

6993		Mark Scheme	June 20. Mainscloux		
5	(i)	$\frac{dy}{dx} = 3x^2 - 6x - 9$ = 0 when $3x^2 - 6x - 9 = 0 \Rightarrow x^2 - 2x - 3 = 0$	M1 A1	Diffn and set = 0 Derived fn	
		$\Rightarrow (x-3)(x+1) = 0 \Rightarrow x = 3, -1$ When $x = -1, y = 12$ d^2y	A1	Stationary point	
		$\frac{dx^2}{dx^2} = 6x - 6 < 0 \text{ when } x = -1 \text{ so maximum}$ Allow SC1 for (-1, 12) with no working	A1 5	turning points	
		Alternative ways to demonstrate maximum at x = -1 Value of y M1 $\boxed{-1 - \qquad -1 \qquad -1 +} \qquad A1$ $\boxed{y < 12 \qquad y = 12 \qquad y < 12}$ M1 Gradient of tangent M1 $\boxed{-1 - \qquad -1 \qquad -1 +} \qquad A1$ $\boxed{\frac{-1 - \qquad -1 \qquad -1 +} \qquad A1} \qquad A1$ $\boxed{\frac{-y > 0 \qquad \frac{dy}{dx} = 0 \qquad \frac{dy}{dx} < 0} \qquad A1}$		Allow at most one integer either side (typically, $x = -2$, 0 if turning point is correct)	
	(ii)		B1 1	General shape: turning points in correct quadrants Intercept on y axis in [0,12] Does not turn back on itself.	
6	(i)	u = 90, v = 6, s = 2016 $\Rightarrow 6^{2} = 90^{2} + 2a \times 2016$ $\Rightarrow a = -\frac{90^{2} - 6^{2}}{4032} = -\frac{8064}{4032} = -2 \text{ m s}^{-2}$	M1 A1 A1 3	Using correct formula Correct substitution	
	(ii)	u = 90, v = 6, a = -2 $\Rightarrow 6 = 90 - 2t$ $\Rightarrow t = \frac{84}{2} = 42 \text{ secs}$	M1 A1	Using correct formula	
		The two parts can be the other way round	2		

		h h	So/1
6993 Mark Scheme		June 20 June 20	ing in the second se
7 (i) $\sin\theta \cos\theta \sin^2\theta + \cos^2\theta$			d.con
$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin\theta}{\sin\theta\cos\theta} $ B1	1		"
$=\frac{1}{1}$			
$\sin\theta\cos\theta$			
A1t·	1		
$\sin^2 \theta + \cos^2 \theta = 1$			
$\rightarrow \sin \theta + \cos^2 \theta = 1$			
$\Rightarrow \sin\theta + \frac{1}{\sin\theta} = \frac{1}{\sin\theta}$			
$\Rightarrow \frac{\sin\theta}{\theta} + \frac{\cos\theta}{\sin\theta} = \frac{1}{\sin\theta}$			
$\begin{array}{c c} \cos\theta & \sin\theta & \sin\theta\cos\theta \\ \hline (ii) & 1 & \sin\theta\cos\theta & M \end{array}$	1	Using (i) and tan	
$\sin\theta\cos\theta = \frac{1}{4} \Rightarrow \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 4$			
$\Rightarrow \tan \theta + \frac{1}{2} = 4$ A1	1		
$\tan \theta$ $\tan \theta$ $\tan \theta$	2		
(iii) $\tan \theta + \frac{1}{\tan \theta} = 4 \Rightarrow \tan^2 \theta + 1 = 4 \tan \theta$ M	1	Clear fractions to give 3 term quadratic	
$\Rightarrow t^2 - 4t + 1 = 0$			
$t = \frac{4 \pm \sqrt{16 - 4}}{4 \pm \sqrt{16 - 4}} = 2 \pm \sqrt{3}$ (= 3.732 and 0.268) M ³	1	Sub numbers into	
$\begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	1	correct quadratic	
$\Rightarrow \theta = 15^{\circ} \text{ and } 75^{\circ}$ A1	1	Rounds to these	
Sp Case B1 for 15 and B1 for 75 with no supporting working	4		
8 $v = 60(t^4 - 10t^3 + 25t^2)$			
$\Rightarrow s = \int_{0}^{5} (60t^{4} - 600t^{3} + 1500t^{2}) dt$			
$= \begin{bmatrix} 12t^{5} - 150t^{4} + 500t^{3} \end{bmatrix}_{0}^{5}$	1 2,1	Integrate Terms 1 each error	
DN	M1	Sub $t = 5$	
$\begin{bmatrix} = 6250 \text{ m} \\ \text{If 60 is left out then 4/5 only.} \end{bmatrix}$ A1	1 5	Cao	

					mun m	
6993	3	Mark Scheme			June 20. Jun	As this
9	(i)	Centre is $\left(\frac{1+15}{2}, \frac{3+1}{2}\right) = (8, 2)$	B1 B1	2	For 8 WWW For 2 WWW	J. C.C
		Nb Working with vectors to give diameter = $[14,2]$ and so radius = $[7,1]$ giving centre $(15 - 7, 3 - 1)$ is correct.				
	(ii)	$ PC = \sqrt{(8-1)^2 + (2-3)^2} = \sqrt{50} = 5\sqrt{2}$	M1 A1	2	For $\sqrt{50}$	
		Alt: Length of diameter = $\sqrt{(15-1)^2 + (3-1)^2} = \sqrt{14^2 + 2^2}$				
		$=\sqrt{200} = 10\sqrt{2}$ $\Rightarrow \text{Radius} = 5\sqrt{2}$				
	(iii)	$(x-8)^{2} + (y-2)^{2} = 50$ $\Rightarrow x^{2} + y^{2} - 16x - 4y + 64 + 4 - 50 = 0$	M1		Correct use of formula including 50 and using their midpoint	
		$\Rightarrow x^2 + y^2 - 16x - 4y + 18 = 0$	A1	2		
10	(i)	Sub (0,4)	M1			
		Gives $k = \frac{1}{2}$	A1	2		
	(ii)	Sub (0, 4)	M1			
		Gives $c = -\frac{1}{4}$	A1	2		
	(iii)	When $x = 3$ $y = -\frac{1}{4}(3-2)^2(3-4) = 0.25$ for cubic	B1			
		Or when $x=3$, $y > 0$ for cubic				
		John's model is better	DB1			
				2		

Section B

Allow 4 sf in this question

11	(i)	AF BF 100		M1		Sin rule applied
		$\frac{1}{\sin 70} = \frac{1}{\sin 60} = \frac{1}{\sin 50}$		A1		Sight of 50 and 70
		$\Rightarrow AF = \frac{100}{\sin 50} \times \sin 70 \ (=122.7 \ m)$ $\Rightarrow BF = \frac{100}{\sin 50} \times \sin 60 = 113.1 \ m \text{ oe}$		A1 M1 A1	5	Correct sine rule to find BF
		Alt:				
		Cosine rule for BF:	M1			
		$BF^{2} = 100^{2} + 122.7^{2} - 2 \times 100 \times 122.7 \times \cos 60$ - 12785				
		BF = 113.1	A1			
	(ii)	$FT = AF \times tan 10$		M1		
		$= 122.7 \tan 10 = 21.6 \text{ m}$		A1		
					2	
		Anything that rounds to 21.6				
	(iii)	<i>CF</i> = 122.7sin60		M1		
		=106.3 m		A1		Accept 106.2 or 106
		$Or: = their BF \times \sin 70$				
		TheirFT		M1		Using tan correctly
		$\Rightarrow \tan \theta = \frac{1}{TheirCF}$		F1		Substituting correctly
		$\Rightarrow \theta = 115^{\circ}$		A1		Accept 11 or 12
					5	
		Alt: to find CF.				
		Area of triangle = $\frac{1}{2} \times AF \cdot AB \sin 60 = 5313$	M1			
		$\Rightarrow \frac{1}{2} \times CF \times 100 = 5313 \Rightarrow CF = 106.3$	A1			

6993	3	Mark Scheme			June 20. Mainschool	Sths Star
12	(i)	$y = 0.3x^2 - 1.5x$				·COM
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0.6x - 1.5$	B1		Derivative	
		When $x = 5$ $g_t = 1.5$	M1		Find g_t and use of $m_1 \times \dots = 1$	
		$\Rightarrow g_n = -\frac{2}{3}$	A1		$m_2 = -1$ For g_n	
		AB: $y = -\frac{2}{3}(x-5)$				
		$\Rightarrow 2x + 3y = 10$	Al	4	form	
	(ii)	Solve simultaneously: 3y + 2x = 10	M1	<u> </u>	Method to eliminate one variable	
		2y + 3x = 0				
		6y + 4x = 20				
		6y + 9x = 0				
		5x = -20	F1		r and u	
		$\Rightarrow x = -4, y = 6$	AI		x and y.	
		SC1: answer with no working		3		
	(iii)	Area of triangle = $\frac{1}{2} \times 5 \times their \ y = 15$	E1		Might appear anywhere in this part	
		Area under curve = $\int_{0}^{5} (0.3x^2 - 1.5x) dx$	M1		Ignore limits here	
		$= \left[0.1x^3 - 0.75x^2 \right]_0^5$	A1			
		= -6.25	A1		Condone lack of -ve	
		\Rightarrow Area of card = 15+6.25 = 21.25	Δ 1		sign	
		Other methods, follow scheme	AI	5		
		ieE1 Area of triangle ML area as integral				
		Al Integrand				
		Al value for area				
		A1 Final answer				

699	3	Mark Scheme				June 20 June 20	A.COL
13	(i)	Ali: $\frac{72}{t}$ Beth: $\frac{72}{t+2}$			M1 A1 A1 3	Accept Beth: $\frac{72}{t} - 3$.,
	(ii)	$\frac{72}{t} - \frac{72}{t+2} = 3$ $\Rightarrow 72(t+2) - 72t = 3t(t+2)$ $\Rightarrow 72t + 144 - 72t = 3t(t+2)$ $\Rightarrow 3t(t+2) = 144$			M1 A1 M1 A1 A1 5	Subtraction of their terms = 3 Multiply out and simplify	
		Alternative (based on alternative answer to (i) $\frac{72}{72} = t + 2$ $\Rightarrow 72t = (72 - 3t)(t + 2)$ $\Rightarrow 72t = 72t - 3t^{2} + 144 - 6t$ $\Rightarrow 3t^{2} + 6t = 144 \Rightarrow 3t(t + 2) = 144$	M1 M1	A1 A1 A1			
	(iii)	3t(t+2) = 144 $\Rightarrow 3t^{2} + 6t - 144 = 0$ $\Rightarrow t^{2} + 2t - 48 = 0$ $\Rightarrow (t+8)(t-6) = 0$ $\Rightarrow t = 6$ $\Rightarrow Ali takes 6 hours and Beth takes 8 hours.$ SC1 for answer with no working			M1 A1 A1 A1 4	For quadratic in simplified form. (See below) www	

What is "simplified form"? Either a quadratic with all three terms on left = 0 ready for the use of the formula OR: Divide through by 3 giving $t^2 + 2t = 48$ ready for solving by the completion of the square.

699:	3	Mark Scheme			June 20. June 20.
14	(i)	$200x + 100y \ge 1500$ oe	M1 A1	2	Deriving a linear inequality
	(ii)	$y \ge x$	B1		
	(iii)	$16 \frac{16}{14} \frac{1}{12} \frac{1}{10} \frac{1}{12} \frac{1}{1$	B1 B1 E1	3	One line Other line Shading for both, ft their inequalities No Scales: B0, B0, E1 Condone scales not as instructed.
	(iv)	C = 80x + 60y Correct point is (5, 5) Cost = £700 In absence of OF, 80 ×5 + 60× 5 must be seen	B1 B1 M1 A1	4	Sub in OF
	(v)	Now minimum cost is at (7, 1) Giving £620 Nb (8, 0) gives £640	B1 B1	2	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

FREE-STANDING MATHEMATICS QUALIFICATION ADVANCED LEVEL

Additional Mathematics

6993

www.mymathscloud.com

QUESTION PAPER

Candidates answer on the printed answer book.

OCR supplied materials:

- Printed answer book 6993
- Other materials required:
- Scientific or graphical calculator

Monday 13 June 2011 Morning

Duration: 2 hours

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the printed answer book and the question paper.

- The question paper will be found in the centre of the printed answer book.
- Write your name, centre number and candidate number in the spaces provided on the printed answer book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the printed answer book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the printed answer book and the question paper.

- The number of marks is given in brackets [] at the end of each question or part question on the question paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **100**.
- The printed answer book consists of **20** pages. The question paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

Do not send this question paper for marking; it should be retained in the centre or destroyed.

Formulae Sheet: 6993 Additional Mathematics

In any triangle ABC

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

Binomial expansion

When *n* is a positive integer

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

where

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Answer all questions on the Printed Answer Book provided.

Section A

	m	n n
	3	Myn 2 Math
	Answer all questions on the Printed Answer Book provided.	TIPISCIO,
	Section A	-UCI.COM
1	Determine whether the point (5, 2) lies inside or outside the circle whose equation is $x^2 + y^2$. You must show your working.	= 30. [3]
2	The equation of a curve is $y = x^3 - x^2 - 2x - 3$.	
	Find the equation of the tangent to this curve at the point (3, 9).	[5]
3	In the triangle PQR, $PQ = 8 \text{ cm}$, $RQ = 9 \text{ cm}$ and $RP = 7 \text{ cm}$.	
	(i) Find the size of the largest angle.	[4]
	(ii) Calculate the area of the triangle.	[3]
4	Solve the equation $5 \sin 2x = 2 \cos 2x$ in the interval $0^\circ \le x \le 360^\circ$. Give your answers correct to 1 decimal place.	[5]
5	The coordinates of the points A, B and C are $(-2, 1)$, $(5, 2)$ and $(4, 9)$ respectively. m^2 1, 5	
	(a) Find the coordinates of the midpoint, M, of the line AC.	[1]
	(b) Show that BM is perpendicular to AC.	[3]
	(c) (i) Use the result of part (b) to state the mathematical name of the triangle ABC.	[1]
	(ii) Prove this by another method.	[2]
6	Solve the inequality $x^2 - 12x + 35 \le 0$.	[4]
7	(a) Determine whether or not each of the following is a factor of the expression $x^3 - 7x + 6$. You must show your working.	
	(i) $(x-2)$	[2]
	(ii) $(x+1)$	[1]
	(b) (i) Factorise the function $f(x) = x^3 - 7x + 6$.	[3]
	(ii) Solve the equation $f(x) = 0$.	[1]

(i) On the axes given, indicate the region for which the following inequalities hold. You sho shade the region which is not required.

[2]

[3]

(ii) Find the minimum value of 6x + y subject to these conditions.

The gradient function of a curve is given by $\frac{dy}{dx} = 3x^2 - 2x + 4$. 9

[4] Find the equation of the curve, given that it passes through the point (2, 2).

You are given that $\sin \theta = \frac{2}{5}$ with $0^{\circ} \le \theta \le 90^{\circ}$. 10

Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, find an exact value for $\cos \theta$.

© OCR 2011

		5 Section B	WWW. TRY THE MENT
11	Egg For	gs are delivered to a supermarket in boxes of 6. each egg, the probability that it is cracked is 0.05 independently of other eggs.	Sty.Com
	Fine	d the probability that	
	(i)	in one box there are no cracked eggs,	[2]
	(ii)	in one box there is exactly 1 cracked egg.	[4]
	The	e manager checks the eggs as follows.	
	•	• He takes a box at random from the delivery.	
	•	• He accepts the whole delivery if this box contains no cracked eggs.	
	•	• He rejects the whole delivery if the box contains 2 or more cracked eggs.	
	•	If the box contains 1 cracked egg then he chooses another box at random.	
	•	He accepts the delivery only if this second box contains no cracked eggs.	
	(iii)	Find the probability that the delivery is rejected.	[6]
12	Two	o cars, A and B, move from rest away from a point O on a straight road starting at	the same time.
	(a)	Car A moves with constant acceleration of 2 m s^{-2} .	
		Express the displacement of car A after time t seconds as a function of t .	[2]
	(b)	Car B moves with acceleration given by $a = \frac{1}{2}t + 1$.	
		Express the displacement of car B after time t seconds as a function of t .	[4]
	(c)	(i) Find the time at which the cars are the same distance from O.	[2]
		(ii) Find the distance they have travelled at that time.	[2]

(d) Draw a sketch graph of the velocity of each car on the axes given. [2]

www.mymathscloud.com A pyramid has a square base, ABCD, with vertex E. E is directly above the centre of the base, C 13 shown in Fig. 13.

The lengths of the sides of the base are each 2x metres and the height is h metres. The lengths of the sloping edges, AE, BE, CE and DE, are each 5 metres.

Fig. 13

(i)	Show that $2x^2 = 25 - h^2$.	[2]
(ii)	Show that the volume of the pyramid, $V \text{ m}^3$, is given by $V = \frac{50h - 2h^3}{3}$.	[2]
(iii)	As h varies, find the value of h for which V has a stationary value.	[4]
(iv)	Prove that this stationary value is a maximum.	[2]
(v)	Calculate the angle between the edge AE and the base when h takes this value.	[2]
[Vol	ume of a pyramid = $\frac{1}{3}$ × base area × height.]	

$$y = \frac{1 - (x - 1)^4}{5}.$$

The graph is shown in Fig. 14. Units are metres.

Fig. 14

(a)	(i) Write down the maximum value of $1 - (x - 1)^4$.	[1]
	(ii) Hence write down the maximum height of the speed hump.	[1]
(b)	Show that $y = \frac{1}{5}(4x - 6x^2 + 4x^3 - x^4)$.	[3]
(c)	Find the area of the cross-section of the speed hump.	[7]

Additional FSMQ

Free Standing Mathematics Qualification

6993: Additional Mathematics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Subject-specific Marking Instructions 1.

- June > Mainscioud.com **M** (method) marks are not lost for purely numerical errors. 1 A (accuracy) marks depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded. B (independent) marks are independent of M (method) marks and are awarded for a correct final answer or a correct intermediate stage.
- 2. Subject to 1, two situations may be indicated on the mark scheme conditioning the award of **A** marks or **B** marks:
 - Correct answer correctly obtained (no symbol) i.
 - Follows correctly from a previous answer whether correct or not (FT on mark scheme and on the annotations tool). ii.
- 3. Always mark the greatest number of significant figures seen, even if this is then rounded or truncated in the answer.
- Where there is clear evidence of a misread, a penalty of 1 mark is generally appropriate. This may be achieved by awarding **M** marks 4. but not an A mark, or awarding one mark less than the maximum.
- 5. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your team leader.
- 6. Where a follow through (FT) mark is indicated on the mark scheme for a particular part question, you must ensure that you refer back to the answer of the previous part question if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

2. Abbreviations

The following abbreviations are commonly found in Mathematics mark schemes.

- Where you see oe in the mark scheme it means or equivalent. •
- Where you see cao in the mark scheme it means correct answer only. ٠
- Where you see **soi** in the mark scheme it means **seen or implied**.
- Where you see www in the mark scheme it means without wrong working. •
- Where you see rot in the mark scheme it means rounded or truncated. ٠

- June ≥ mymathscloud.com Where you see seen in the mark scheme it means that you should award the mark if that number/expression is seen anywhere in the • answer space, even if it is not in the method leading to the final answer.
- Where you see figs 237, for example, this means any answer with only these digits. You should ignore leading or trailing zeros and • any decimal point e.g. 237000, 2·37, 2·370, 0·00237 would be acceptable but 23070 or 2374 would not.

Section A

6993Mark SchemeJune 20Section A							
Q	uesti	on	Answer	Marks	Part Marks and	Guidance	··COM
1			For (5, 2) use $x^2 + y^2$ = 29 so inside	M1 A1 A1 3	Substitute or use Pythagoras soi or √29 Conclusion (dependent on M1A1 awarded)	As usual only award A marks if the M mark has been awarded. Alternative method: Sub of $x = 5$ or $y = 2$ in $x^2 + y^2 = 30$ to find y or x M1 $y = \sqrt{5}$ or $x = \sqrt{26}$ A1	
2			$\frac{dy}{dx} = 3x^2 - 2x - 2$ At x = 3 gradient = 27 - 6 - 2 = 19 $\Rightarrow y - 9$ = "their" 19(x - 3) $\Rightarrow y = 19x - 48$ oe	M1 A1 A1 M1 A1 5	Differentiate All three terms correct 19 isw (dep on first M1) Find line using correct point and <i>their</i> 19	At least one power decreased by 1. <i>"their"</i> 19 means: the value of the derivative Only 3 terms	
3	i		eg cos $P = \frac{8^2 + 7^2 - 9^2}{2.8.7}$ oe $\Rightarrow P = 73.4^\circ$	M1 A1 M1 A1 A1 4	Cosine formula correctly used to find any angle Anything that rounds to 73.4°, 48.2° or 58.4° For identifying correct angle	Anything that rounds to 73.4°	

6993				Marks	Nark Scheme Part Marks	June 20 June 20 Anginsch
3	ii		Area = $\frac{1}{2} \times 7 \times 8 \times \sin(\text{their angle P})$ = 26.8	M1 A1 A1 3	Use of formula Correct substitution from <i>their</i> (i)	Can be at any vertex Anything that rounds to 26.8 Accept complete alternative methods
4			$5\sin 2x = 2\cos 2x$ $\Rightarrow \tan 2x = 0.4$ $\Rightarrow 2x = 21.8, 201.8$ $\Rightarrow x = 10.9, 100.9$ Also $x = 190.9, 280.9$	M1 A1 A1 A1 A1 5	Use of tan 0.4 10.9 Any 2 nd value 3 rd and 4 th values (<i>ignore extra solutions</i>)	allow tan <i>x</i> = 0.4 for M1A1 Alternative method Use of Pythagoras to get $sin 2x = \frac{2}{\sqrt{29}}$ or $cos 2x = \frac{5}{\sqrt{29}}$ M1A1 and the last three marks are still available, ignore extra solutions
5	а		<i>M</i> is $\left(\frac{-2+4}{2}, \frac{1+9}{2}\right)$ which is (1,5)	B1 1		
5	b		Gradient of AC is $\frac{9-1}{4+2} = \frac{4}{3}$ Gradient of BM is $\frac{2-5}{5-1} = -\frac{3}{4}$ $\frac{4}{3} \times -\frac{3}{4} = -1$ oe	B1 B1 B1 3	One gradient Second gradient <i>Their</i> $m_1 \times m_2 = -1$	Eg One is the negative reciprocal of the other
5	С	i	Isosceles	B1 1	Allow right-angled isosceles	Accept wrong spelling Do not accept right-angled triangle

699	3			N	Mark Scheme	June 20
Question		on	Answer	Marks	Part Marks and	d Guidance
5	С	ii	$AB^2 = 7^2 + 1^2 = 50$	M1	Using Pythagoras on AB and BC	Attempt by vectors AB and BC M1
			BC ² = 7 ² + 1 ² = 50 ⇒ two sides equal in length	A1	Or fully labelled diagram with correct sides shown	Alternative If answer to (c)(i) was right-angled, then accept proof that it is (requires all three lengths.) Alternative: If (c)(i) was equilateral or scalene then M1 (only) for
				2		NB If nothing is written in (i) then no credit in this part.
6			$(x\pm5)(x\pm7)$	M1	Or use of correct formula (allow one error in substitution) or correct shaped graph seen	
			Boundaries $x = 5, x = 7$	A1	soi	
			\Rightarrow 5 \leq x \leq 7	B2 4	Accept $x \ge 5$, $x \le 7$ for B1 , B1	Condone < or >
7	а	i	Attempt to find f(2) by substitution of 2	M1	Remainder theorem or attempt to divide (justification is sight of $x^3 - 2x^2$) Or: attempt to factorise, justification is sight of (x^23)	
			= 0, So Yes	A1 2	Correct working only	
7	а	ii	f(−1) = −1 + 7 + 6 = 12 so no.	B1 1	Sight of 12 or correct evidence, conclusion required	
7	b	i	$f(y) = (y - 2)(y^2 + 2y - 2)$	M1	Attempt to factorise or use long division (justifications as in (a)(i))	Alternative: Use of Remainder theorem M1
			= (x-2)(x+3)(x-1)	A1 A1	Answer	All correct A1
7	b	ji	x = 1, 2, -3	81 B1	FT their brackets	Must be three roots
•			, , _ , `	1		

Mark Scheme

699	6993 Mark Scheme June 20 Mark						
Q	uesti	on	Answer	Marks	Part Marks and	Guidance	
8	i			B1 B1 B1 B1	for one line for correct shading for other line for correct shading for correct shading to give $x \ge 0, y \ge 0$ NB If intercepts are within 1 small square of the correct points then give the marks for the lines	If there is work here that is not crossed out, then mark it and ignore anything on Page 18. Helpful hint: Lines go through $(0, 12)$ and $(4,0)$ (0, 10) and $(6, 0)Intersection at (1.5, 7.5)If B0 for a line allow B1 for shadingif negative gradient and linesintersect$	
8	ii		6x + y is minimum at (0, 12) <i>(can be implied by correct answer)</i> So is 12	5 B1 B1 2			
9			$\frac{dy}{dx} = 3x^2 - 2x + 4 \Rightarrow (y) = x^3 - x^2 + 4x + c$ $(2,2) \text{ satisfies } \Rightarrow 2 = 8 - 4 + 8 + c$ $\Rightarrow c = -10$ $\Rightarrow y = x^3 - x^2 + 4x - 10$	M1 A1 M1 A1	Integrate Ignore <i>c</i> (dep on 1 st M1 mark) Substitute cao	At least one term with power increased by 1. (NB do not accept multiplying throughout by x) (ie must be $y =$)	
10			$\sin\theta = \frac{2}{5} \Rightarrow \sin^2\theta = \frac{4}{25} \Rightarrow 0.16 + \cos^2\theta = 1$ $\cos^2\theta = \frac{21}{25}$ $\Rightarrow \cos\theta = \frac{1}{5}\sqrt{21} \text{ oe}$	M1 A1 A1	Use of Pythagoras $\cos^2 \theta$ eg $\sqrt{0.84}$ or $\sqrt{\frac{21}{25}}$ isw	Sight of a triangle with sides 2, 5, $\sqrt{21}$ acceptable for M1 Then A2 for $\cos\theta$ NB M0 if calculator used to find θ in order to find $\cos\theta$	

Section B

6993 Section B					/ark Scheme	June 20 June 2
Q	uesti	on	Answer	Marks	Part Marks and	l Guidance
11	i		$P(0) = (0.95)^6$ = 0.735(09189)	M1 A1 2	Correct <i>p</i> plus correct power	Not 2sf
11	ii		$P(1) = 6 \times (0.95)^5 \times (0.05)^1$ $= 0.232(134281)$	M1 B1 B1 A1 4	Correct <i>p</i> and <i>q</i> and powers add to 6 Coefficient soi Correct powers for correct <i>p</i> and <i>q</i> soi	Coefficient may be missing
11	111		$P(1^{st} box contains 2 or more eggs) = 1 - (their(i) + their (ii)) = 1 - (0.7351 + 0.2321) = 1 - 0.9672 = 0.0328$ $P(2^{nd} box has any cracked eggs) = 1 - their (i) = 0.2649$ $P(consignment is rejected) = 0.0328 + 0.2649 \times their (ii) = 0.0328 + 0.0615 = 0.0943$	M1 A1 M1 A1 M1 A1 A1 6	Accept anything rounding to 0.033 Accept anything rounding to 0.265 In either method, accept answers which lie between 0.094 and 0.095	Alternative P(accepted) M1 Ans(ii) × Ans(i) A1 0.1706 soi (Accept 0.171) M1(dep) Add to this Ans(i) A1 0.9057 (Accept 0.906) M1 P(consignment is rejected) = 1 - 0.9057 A1 $= 0.09428$

699	3			Ν	/lark Scheme	June 20	141 Alatins
Q	uesti	on	Answer	Marks	Part Marks and	Guidance	Cloud
12	a		$s = ut + \frac{1}{2}at^2$ with $u = 0$ and $a = 2$ $\Rightarrow s = t^2$	M1 A1 2	Constant acceleration formulae or integrate twice – ignore <i>c</i>		d.com
12	b		$(v) = \frac{t^2}{4} + t$ $s = \frac{t^3}{4} + \frac{t^2}{4}$	M1 A1 M1	Integrate		
			12 2 Ignore c	A1 4			
12	С	i	$\frac{t^3}{12} + \frac{t^2}{2} = t^2$ $\Rightarrow \frac{t}{12} + \frac{1}{2} = 1$ $\Rightarrow t = 6$	M1 A1 2	Equate their functions		
12	С	ii	$s = 6^{2}$ or $s = \frac{6^{3}}{12} + \frac{6^{2}}{2}$ Displacement = 36 (m)	M1 A1 2	Substitute <i>their non-zero</i> (c)(i) in <i>their</i> (a) or (b) soi		
12	d			B1 B1 2	One clearly straight line through origin with positive gradient Other clearly a curve through the origin of correct shape with first part below the line as per diagram	Ignore labels	

Mark Scheme

699	3			N	Mark Scheme June 20 June 20			
Q	uesti	on	Answer	Marks	Part Marks and	I Guidance		
13	i		$AO^{2} = x^{2} + x^{2} = 2x^{2}$ or $AC^{2} = (2x)^{2} + (2x)^{2} = 8x^{2}$ $h^{2} + AO^{2} = AE^{2} \Rightarrow h^{2} + 2x^{2} = 25$ $\Rightarrow 2x^{2} = 25 - h^{2}$	M1	Correct application of Pythagoras on the base Algebra must be convincing	NB Answer is given		
13	ii		$V = \frac{1}{3} \times \text{base area} \times \text{height} = \frac{1}{3} \times 4x^2h$ $= \frac{50h - 2h^3}{3}$	M1 A1 2	Formula seen including $4x^2$	Care: the answer is given		
13	iii		$\frac{dV}{dh} = \frac{50 - 6h^2}{3}$ $= 0 \text{ when } 50 - 6h^2 = 0$ $\Rightarrow h^2 = \frac{25}{3}$ $\Rightarrow h = \sqrt{\frac{25}{3}} = \frac{5}{\sqrt{3}} = \frac{5}{3}\sqrt{3} = 2.89$	M1 A1 M1 A1 4	Differentiation cao dep Set (numerator) = 0 Any of these answers is acceptable	SC3 $h = 2.89$ with either $\frac{dV}{dh}$ or $\frac{1}{3}$ missing Numerical value must be 2.89		
13	iv		$\frac{d^2 V}{dh^2} = -4h$ < 0 so maximum	M1 A1 2	Or alternatives: Complete method to investigate value of derivative Or: complete method to investigate the value of <i>V</i> either side and at the turning point	Accept –12 <i>h</i>		
13	V		At this point sinEAO = $\frac{h}{5} = \frac{1}{3}\sqrt{3}$ \Rightarrow Angle EAO = 35.3°	M1 A1 2	Use of a correct ratio with <i>their h</i> (and/or <i>x</i>) Accept 35.2 which comes from <i>h</i> = 2.88			

699:	3			Γ	Mark Scheme	June 20 June
Qı	uesti	on	Answer	Marks	Part Marks and	Guidance
14	а	i	Max value = 1	B1 1		Not from any use of 0.2 from graph
14	а	ii	Height = 0.2 (m) or 20 cm	B1		
14	b		$x^4 - 4x^3 + 6x^2 - 4x + 1$	B2	-1 each error	An error is signs, powers, coefficients, failure to include the 1 at end
			$\Rightarrow y = \frac{1}{5} \left(4x - 6x^2 + 4x^3 - x^4 \right)$	B1	Dep on B2 convincing algebra (means sight of an extra correct step www)	
14	С		Area = $\int_{0}^{2} \frac{1}{5} (4x - 6x^{2} + 4x^{3} - x^{4}) dx$	M1	Integrate (ignore <i>c</i>)	Alternative method: Integrate original function is OK, but in dealing with limits x = 0 must
			$=\frac{1}{5}\left[2x^{2}-2x^{3}+x^{4}-\frac{x^{5}}{5}\right]_{0}^{2}$	A3	A2 if one error, A1 if two errors	then be seen.
			$=\frac{1}{5}\left(8-16+16-\frac{32}{5}\right)=\frac{8}{25}$	M1	(Dep on 1st M1) Deal with limits correctly (Putting $x = 0$ does not need to be seen)	Omission of $\frac{1}{5}$ is one error. Multiply by $\frac{1}{5}x$ or $\frac{1}{5x}$, ie
			= 0.32 Area of cross section = $0.32m^2$ = $3200cm^2$	A1 A1 7	Units	integrating $\frac{1}{5}$ gives A0

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998

Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Wednesday 30 May 2012 – Afternoon

FSMQ ADVANCED LEVEL

6993 Additional Mathematics

QUESTION PAPER

Candidates answer on the Printed Answer Book.

- Printed Answer Book 6993
- Scientific or graphical calculator

Duration: 2 hours

WWW.MYMathscloud.com

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **100**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Formulae Sheet: 6993 Additional Mathematics

In any triangle ABC

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

www.mymathscloud.com

Binomial expansion

When n is a positive integer

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n}$$

where

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

		WWW. M. M.
	3	Winath Maths
	Section A	^{ISCIDUCI}
1 (i) Find the range of values of x satisfying $x^2 - 4x + 3 \le 0$.	[3] .Con
(ii) Show this range on the number line provided.	[1]

2 A die has 6 faces numbered one to six. The die is biased so that when it is thrown the probability of obtaining a six is $\frac{1}{5}$.

The die is thrown 5 times.

Find the probability of obtaining

(i) at least 1 six,	[2]
(ii) exactly 3 sixes.	[4]

3 The function $f(x) = x^3 + ax + 6$ is such that when f(x) is divided by (x - 3) the remainder is 12.

(i) Show that the value of a is -7 .	[2]
(ii) Factorise $f(x)$.	[3]

4 A car moves from rest with constant acceleration on a straight road. When the car passes a point A it is travelling at 10 m s^{-1} and when it passes a point B further along the road it is travelling at 16 m s^{-1} .

The car takes 10 seconds to travel from A to B.

Find

- the distance AB,
- the constant acceleration.

[4]

- (i) Show that the equation $3\cos^2\theta = \sin\theta + 1$ can be written as $3\sin^2\theta + \sin\theta 2 = 0$. 5
 - (ii) Solve this equation to find values of θ in the range $0^\circ < \theta < 360^\circ$ that satisfy

$$3\cos^2\theta = \sin\theta + 1$$

- The equation of a curve is $y = 2x^3 9x^2 + 12x$. 6
 - (i) Show that the curve has a stationary point where x = 2.
 - (ii) Determine whether the stationary value where x = 2 is a maximum or minimum.
- 7 A yachtsman wishes to sail from a port, A, to another port, B, which is 9km due East of A. Because of the wind he is unable to sail directly East and sails 8 km on a bearing of 070° to point C.

Calculate

- (i) the distance he is now from port B,
- (ii) the angle ABC and hence the bearing on which he must sail to reach port B from point C, correct to the nearest degree. [4]

[3]

www.mymathscloud.com

[4]

[4]

[2]

8 (i) Show that
$$\int_0^2 (x^2 + 2x - 3) dx = \frac{2}{3}$$
.

The diagram shows part of the curve $y = x^2 + 2x - 3$.

- (ii) Marc claims that the total area between the curve, the x-axis and the lines x = 0 and x = 2 is $\frac{2}{3}$. Explain why he is wrong.
- (iii) Calculate the total area between the curve, the x-axis and the lines x = 0 and x = 2. [3]
- 9 The height above the ground of a seat on a fairground big wheel is h metres. At time t minutes after the wheel starts, h is given by

$$h = 7 - 5\cos(480t)^{\circ}$$
.

(i)	Write down the initial height above the ground of the seat (when $t = 0$).	[1]
(ii)	Find the greatest height reached by the seat.	[2]
(iii)	Calculate the time of the first occasion when the seat is 9 metres above the ground. Give your answer correct to the nearest second.	[4]

www.mymainscloud.com

[1]

Section **B**

		m
	6	a. My Marken
	Section B	aths ch
10	A (1, 10), B (8, 9) and C (7, 2) are three points.	Out.coc
	(i) Find the coordinates of the midpoint, M, of AC.	[1]
	(ii) Find the equation of the circle with AC as diameter.	[4]
	(iii) Show that B lies on this circle.	[1]
	(iv) Prove that AM and BM are perpendicular.	[3]
	(v) BD is a diameter of this circle. Find the coordinates of D.	[3]

The shaded region in the diagram shows a wooden shape. 11

The curve has equation $y = \frac{1}{2}x^2$ and the coordinates of A are (-2, 2).

The line AB is the normal to the curve at the point A.

(i)	Find the equation of the line AB.	[5]
(ii)	Find the coordinates of the point B where the line AB meets the curve again.	[3]
(iii)	Find the shaded area.	[4]

6993 Jun12

www.mymathscloud.com The Highway Code gives a table of shortest stopping distances (d feet) for a vehicle travelling at v miles p 12 hour.

The formula used for this table is given by

$$d = av^2 + bv .$$

Two entries in the table are given below.

v mph	d feet
30	75
60	240

(i) By forming and solving a pair of simultaneous equations in a and b, show that the formula is

$$d = \frac{v^2}{20} + v.$$
 [5]

- (ii) Find the difference between the stopping distances for a car travelling at 65 mph and a car travelling at 70 mph. [3]
- (iii) Many drivers maintain a distance of 50 feet or less when driving on a motorway.

Use the formula in part (i) to find the speed at which the shortest stopping distance is 50 feet. [4]

Question 13 is printed overleaf
13 (i) Find the coefficients a, b and c in the expansion

 $(2+h)^3 = 8 + ah + bh^2 + ch^3$.

www.mymainscloud.com (ii) The graph of the equation $y = x^3$ passes through the points P and Q which have x-coordinates 2 and 2 + h respectively.

Show that the gradient of the chord PQ is
$$\frac{(2+h)^3 - 8}{h}$$
. [3]

- (iii) Express $\frac{(2+h)^3-8}{h}$ as a quadratic function of h. [2]
- (iv) As the value of h decreases, the point Q gets closer and closer to the point P on the curve. As h gets closer to 0 the chord PQ gets closer to being the tangent to the curve at P.

Deduce the value of the gradient of the tangent at P.

(v) Kareen uses the same method to deduce the value of the gradient of the tangent at the point (2, 16) on the curve $y = x^4$.

The first three lines of her working are given below and in the answer booklet.

Take P to be the point (2, 16) Take Q to be the point $(2 + h, (2 + h)^4)$ The gradient of the chord PQ is given by $\frac{(2+h)^4}{h} = \frac{16}{h}$

Complete Kareen's working.

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

[3]

[1]

Additional FSMQ

Free Standing Mathematics Qualification

6993: Additional Mathematics

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations and abbreviations

6993	Mark Scheme June 201.	Main Astra
Annotations and abbreviations		'SCIOUX
Annotation in scoris	Meaning	, com
✓and ×		
BOD	Benefit of doubt	
FT	Follow through	
ISW	Ignore subsequent working	
M0, M1	Method mark awarded 0, 1	
A0, A1	Accuracy mark awarded 0, 1	
B0, B1	Independent mark awarded 0, 1	
SC	Special case	
۸	Omission sign	
MR	Misread	
Highlighting		
Other abbreviations in mark	Meaning	
scheme		_
M1 dep*	Method mark dependent on a previous mark, indicated by *	4
сао	Correct answer only	
oe	Or equivalent	1
rot	Rounded or truncated	1
soi	Seen or implied	1
www	Without wrong working	1

Mark Scheme

Subject-specific Marking Instructions

- a Annotations should be used whenever appropriate during your marking.
- b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

Mark Scheme

June 201

- www.mymathscloud.com When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says d otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. е Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- Rules for replaced work g

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the guestion remain unaltered, mark h according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Viewing tips for this paper

In general, set your screen to 'fit width.'

You may find it helpful to set to 'fit height' for the some questions:

[if you set a view, it stays for subsequent scripts]. If the writing is too small, you may wish to zoom in.

Section A

699 Se	93 ction A		Mark Sc	heme	June 201. June 2
	Question	Answer	Marks	Guid	ance
1	(i)	$(x \pm 1)(x \pm 3) (\le 0)$	M1 A1	Attempt to factorise oe Correct (or sight of 1 & 3)	SC Test integers and select 1 and 3 B1
		$\Rightarrow 1 \le x \le 3$ www	A1 [3]	Answer	Accept $x \le 3$ and $1 \le x$ Or : from 1 to 3 inclusive (must imply inclusion of end points).
		Alternative: Draw curve for parabola the right way up M1			
		Correct points on x-axisA1answerA1			
	(ii)	<u> 1 3 </u>	B1 [1]	Correct answer Or: Follow through their ans to (i) .	Filled in circles must be evident. SC B1 if correct but M0 in (i) . Accept alternative conventions. Answer must be a range (ie just a set of points is 0).

6993 Mark Scheme June 201.					
(Question	Answer	Marks	Guida	nce
2	(i)	$=1-\left(\frac{4}{5}\right)^{5}$	M1	$1 - p^5$	p does not have to be 0.8 for this mark but the power must be 5. (ie p could be 0.2)
		$= 0.672(32) = \frac{2101}{3125}$	A1 [2]		
		Alternative: P(1) ++ P(5) 5 terms added, each term with powers correct M1 Answer A1		Condone missing coeffs for M1	Terms are: 0.4096, 0.2048, 0.0512, 0.0064, 0.00032.
	(ii)	$10p^{3}q^{2} = 10 \times 0.2^{3} \times 0.8^{2}$	M1	Must include powers of <i>p</i> and <i>q</i> and $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$ or ${}^{5}C_{3}$ (which need not be evaluated	Can be obtained by listing.
		$= 0.0512 = \frac{32}{625}$ www	A1	Powers Coefficient soi Accept 0.051 but not 0.05	
			[4]		

6993	

699	3		Mark Sc	heme	June 201. All Barris
	Question	Answer	Marks	Guidan	ce score
3	(i)	f(3) = 12 $\Rightarrow 27+3a+6 = 12$ $\Rightarrow 3a = -21$ $\Rightarrow a = -7$	M1 A1 [2]		U.C.
		Alternative: Substitute $a = -7$ M1 and show that $R = 12$ A1			If this method is used then if long division is used then $x^3 - 3x^2$ must be seen. NB Answer given so long division must be totally correct for A1
	(ii)	f(1) = 0 or (x - 1) seen $\Rightarrow f(x) = (x - 1)(x - 2)(x + 3)$	M1 A1	Divide, try factor theorem for at least one value, or obtain a 3-term quadratic factor by inspection. Using or getting a correct factor or root Answer	Divide means you need to see the x^2 in the quotient and x^3 and x^2 terms correct in the initial dividing line.
			A1 [3]		

699	3			Mark Sch	neme	June 201. Athso	Stins State
(Question	Answer		Marks	Guidan	ice	5,
4		$s = \left(\frac{u+v}{2}\right)t \Longrightarrow s = 13 \times 10 = 130$	www	M1 A1	In any order using any valid formulae. Ignore units	eg $s = \frac{(10+16)}{2} \times 10$	YO.COM
		$v = u + at \Longrightarrow a = \frac{16 - 10}{10} = 0.6$	www	M1 A1 [4]		eg $16 = 10 + 10a$ Alternative order: $a = \frac{16 - 10}{10} = 0.6$ $\Rightarrow s = 10 \times 10 + \frac{1}{2} \times 0.6 \times 10^{2} = 130$	
						MR $u = 0$ and $v = 10$ gives $s = 50$, $a = 1$ Or $u = 0$ and $v = 16$ gives $s = 80$ and $a = 1.6$ M1 A0 M1 A0	

699	03	•	Mark S	Scheme	June 201. Naths
5	(i)	$3-3\sin^2\theta = \sin\theta + 1$	Marks M1	Sight of and use of $\cos^2\theta = 1 - \sin^2\theta$	
		$\Rightarrow 3\sin^2\theta + \sin\theta - 2 = 0$ www	A1 [2]	Must see = 0	NB answer given
	(ii)	$(3\sin\theta - 2)(\sin\theta + 1) = 0$ $\Rightarrow \sin\theta = -1 \text{ or } \sin\theta = \frac{2}{3}$	M1 A1	Solve to obtain $\sin \theta = \pm 1$ or $\sin \theta = \pm \frac{2}{3}$ Sight of both values	SC2 $\sin \theta = 1, -\frac{2}{3}$ $\Rightarrow \theta = 90^\circ, 318.2^\circ, 221.8^\circ \text{ (only)}$ (Allow 318° and 222°)
		$\Rightarrow \theta = 270^{\circ}, 41.8^{\circ}, 138.2^{\circ}$	A2 [4]	All 3 with no extras in range Ignore –90° A1 for one or two values Or: all 3 values correct but extra values in range. Anything that rounds to 41.8° and 138° Allow 138° but not 42°	

6993 Mark Scheme June 201. Park						
Answer	Marks	Guida	nce			
$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 18x + 12$	M1 A1	Differentiation All three terms	At least 2 terms with powers reduced by 1 (NB: beware division by <i>x</i>).			
When $x = 2$, $\frac{dy}{dx} = 24 - 36 + 12 = 0$	M1 dep	Sub $x = 2$ into or factorise their derived function.	Do not condone division by 6			
	A1	Get 0 or set = 0 and get 2.	before substituting for <i>x</i> . NB answer given. Numerical			
	[4]		values must be seen Second M1 dep on first M1			
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12x - 18$	M1	Diffn their derived function correctly.	Using the function $2x - 3$ can earn M1 A0.			
When $x = 2$, $\frac{d^2 y}{dx^2} > 0$ giving a minimum	A1	BOD no arithmetic computations seen.				
Alternative:M1Sign of gradient either side ofM1 $x = 2$ Or: Values of y either side of $x = 2$ and thevalue of y at stationary point.M1Correct answer (provided l.h. $x > 1$)A1		BOD no arithmetic computations seen.	Allow sketch of function indicating left stationary value is maximum and right one is minimum.			
	Answer $\frac{dy}{dx} = 6x^2 - 18x + 12$ When $x = 2$, $\frac{dy}{dx} = 24 - 36 + 12 = 0$ $\frac{d^2y}{dx^2} = 12x - 18$ When $x = 2$, $\frac{d^2y}{dx^2} > 0$ giving a minimumAlternative: Sign of gradient either side of $M1$ $x = 2$ Or: Values of y either side of $x = 2$ and the value of y at stationary point.M1 Correct answer (provided l.h. $x > 1$)	Mark Sc $\frac{dy}{dx} = 6x^2 - 18x + 12$ M1 A1When $x = 2, \frac{dy}{dx} = 24 - 36 + 12 = 0$ M1 dep A1 $\frac{d^2 y}{dx^2} = 12x - 18$ M1When $x = 2, \frac{d^2 y}{dx^2} > 0$ A1giving a minimum[2]Alternative: Sign of gradient either side of $x = 2$ and the value of y at stationary point.M1 X1 Correct answer (provided l.h. $x > 1$)	Mark Scheme $\frac{dy}{dx} = 6x^2 - 18x + 12$ M1 A1Differentiation A1 A1When $x = 2$, $\frac{dy}{dx} = 24 - 36 + 12 = 0$ M1 dep A1Sub $x = 2$ into or factorise their derived function. Get 0 or set = 0 and get 2. $\frac{d^2y}{dx^2} = 12x - 18$ M1 $\frac{d^2x}{dx^2} = 12x - 18$ Diffn their derived function correctly.When $x = 2$, $\frac{d^2y}{dx^2} > 0$ giving a minimumM1 12 Diffn their derived function correctly.Alternative: Sign of gradient either side of $x = 2$ and the value of y at stationary point.M1 M1 A1BOD no arithmetic computations seen.Alternative: Sign of gradient either side of $x = 2$ and the value of y at stationary point.M1 M1 A1For A1 LH x greater than 1			

Mark Scheme

June	201
------	-----

					mm A
6993			Mark Sc	heme	June 201. June 201.
Q	uestior	n Answer	Mark	Guidan	ce
7	(i)	$(CB^2 =) 8^2 + 9^2 - 2 \times 8 \times 9 \times \cos 20$	M1	8, 9 must be used, any angle	Ignore units
		= 9.684	A1	soi	
		\Rightarrow CB = 3.11	A1 [3]	Anything that rounds to 3.11	
	(ii)	sin ABC sin their 20	M1	Correct application of sine rule	
		$\frac{1}{8} = \frac{1}{\text{their } 3.11}$	A1ft	Must be same angle as used in (i) and <i>their</i> CB	
		$\Rightarrow \sin ABC = 0.879$	A1	Anything that rounds to 62° www	
		$\Rightarrow ABC = 61.55^{\circ}$ $\Rightarrow Bearing = 152^{\circ}$	A1ft	Anything that rounds to 152°	90 + their ABC
		\rightarrow Dearing -132	[4]		
		Cosine Rule: $\cos ABC = \frac{9^2 + their CB^2 - 8^2}{2 \times 9 \times their CB}$ = 0.4767 M1 A1ft		Correct application of cos rule Must be same angle as used in (i) and	
		Then angle and bearingA1A1ftOR: Perpendicular from C and use of sin twiceM1 $h = 8 \sin their 20 = 2.736$ A1ft			
		$SinABC = \frac{2.736}{theirCB}$			
		Then angle and bearing M1 A1ft			NB Question asks for ABC so if not found 3/4
		Or: Find other angle by sine rule M1 A1 Angle ACB = 98.45 giving ABC = 61.55 A1 Bearing = $180 - (98.45 - 70) = 152$ A1ft			Angle = 81.55 can earn M1 A0 A0 (for ABC) A1ft only

6993	3		Marl	k Scl	heme	June 201. Alto Bart	
G	uestion	Answer	Mar	ks	Guidance		
8	(i)	$\int_{0}^{2} (x^{2} + 2x - 3) dx = \left[\frac{x^{3}}{3} + x^{2} - 3x\right]_{0}^{2}$ $= \left(\frac{8}{3} + 4 - 6\right) - (0) \text{oe}$ $= \frac{2}{3} \text{www}$	M1 A1 A1	[3]	Integrate All three terms Completion to $\frac{2}{3}$.	Test for integration is "are there at least two terms with the power increased by 1?" Care that the process is not just multiplying each term by <i>x</i> . Working must be seen as the answer is given. Ignore absence of "– 0".	, con.
	(ii)	Because the curve crosses the <i>x</i> -axis in the range	B1	[1]	Because one bit is +ve and the other is –ve.	Any reference to $x= -3$ will be 0. If there is an additional statement give 0.	
	(iii)	$\left[\frac{x^{3}}{3} + x^{2} - 3x\right]_{0}^{1} \text{ or } \left[\frac{x^{3}}{3} + x^{2} - 3x\right]_{1}^{2}$	M1		Calculation of their integral between 0 & 1 or 1& 2		
		$=\pm 1\frac{2}{3}$ or $2\frac{1}{3}$	A1		One of the areas		
		\Rightarrow Total area = $1\frac{2}{3} + 2\frac{1}{3} = 4$	A1	[3]			

6993	5			Mark	Sc	heme	June 201. August
Q	uestior	ו	Answer	Mark	(S	Guid	dance 90,
9	(i)		$h = 7 - 5 \times \cos 0 = 2$	B1	[1]		sq.com
	(ii)		<i>h</i> =7 – (–5) = 12	M1 A1	[2]	Set $\cos\theta = -1$	
	(iii)		$9 = 7 - 5\cos(480t)$ $\Rightarrow \cos(480t) = -0.4 \text{oe}$ $\Rightarrow 480t = 113578$	M1 A1		Substitute <i>h</i> = 9	
			$\Rightarrow t = 0.2366$ $\Rightarrow time = 0.2366 \text{ mins} = 14 \text{ sec}$	A1 A1	[4]	soi	Allow 114 leading to $t = 0.2375$

Section B

93		Mark So	cheme	June 201. June 201.	
ection B				S.	
Question	Answer	Marks	Guida	ance	
(i)	(4,6)	B1 [1]			
(ii)	Distance MC: $\sqrt{(4-7)^2 + (6-2)^2} = 5$	M1 A1	Attempt to find radius or diameter by pythagoras. soi	Answer given with no working then bod B2 (ie $r = 5$, $r^2 = 25$, $d = 10$, $d^2 = 100$)	
	Equation of circle: $(x-4)^{2} + (y-6)^{2} = 5^{2} (= 25)$	M1 A1 [4]	Must include their M and their r^2 Can be expanded form.		
	Alternative: Equation of circle on AC as diameter: (x-1)(x-7)+(y-10)(y-2)=0				
	$\Rightarrow x^2 - 8x + 7 + y^2 - 12y + 20 = 0$ $\Rightarrow (x - 4)^2 + (y - 6)^2 = 25 \text{isw}$				
(iii)	B lies on circle as $(8-4)^2 + (9-6)^2 = 16+9 = 25$	B1		Working must be convincing	
(iv)	gradient of AM = $\left(\frac{10-6}{1-4}\right) = \frac{4}{-3}$	[1] B1	One gradient (need not be simplified)	Labelling does not need to be specific.	
	gradient of BM = $\left(\frac{9-6}{8-4}\right) = \frac{3}{4}$	B1	Second gradient (need not be simplified)	SC Both gradients upside down or signs the wrong way round B0 B0 B1	
	Since $\frac{4}{-3} \times \frac{3}{4} = -1$ the lines are perpendicular	B1	Demonstration that $m_1 \times m_2 = -1$ is satisfied and all working to derive gradients shown.		

93		Mark Sc	heme	June 201. June 201.
Question	Answer	Marks	Guidance	- ¹⁵ C/C
	Alternative:Use of PythagorasM1 $5, 5, \sqrt{50}$ seen and usedA1Arithmetic correct and final statementA1		Attempt to find all three lengths	
(v)	B to M = $\begin{pmatrix} -4 \\ -3 \end{pmatrix} \Rightarrow$ M to D = $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$	M1	Idea of BM = MD soi	
	\Rightarrow D is (0,3)	A1, A1 [3]	Each value	
	Alternative: Centre as midpoint: Idea M1 $\left(\frac{8+x}{2}\right) = 4 \Rightarrow x = 0$ Each value A1 A1 $\left(\frac{9+y}{2}\right) = 6 \Rightarrow y = 3$			
	Alternative: Equation BM is $y = \frac{3}{4}x + 3$			
	Sub in eqn for circle $\Rightarrow x^2 - 8x = 0$ $\Rightarrow x = 0$ Sub to give $y = 3$			
	Idea M1 Each value A1 A1			

				www.m. M.
6993		Mark So	cheme	June 201. Tain
Question	Answer	Marks	Guida	nce
11 (i)	$\frac{dy}{dx} = x$ At A gradient of tangent = -2	M1 A1	Differentiation	If no differentiation then 0/5
	so gradient of normal $=\frac{1}{2}$. \Rightarrow Eqn of AB is $y-2 = \frac{1}{2}(x+2)$ $\Rightarrow 2y = x+6$ oe	A1ft M1dep A1 [5]	Follow through their gradient of tangent. Using (–2, 2) and their normal gradient 3 terms only	
(ii)	line meets curve when $x^2 = x + 6$ $\Rightarrow x^2 - x - 6 = 0$ $\Rightarrow (x - 3)(x + 2) = 0$ $\Rightarrow \text{At B } x = 3, \ y = \frac{9}{2}$	M1 A1 A1 [3]	Equate <i>their</i> straight line to given curve. Quadratic	
(iii)	Area between = Area under line – area under curve = $16.25 - 5.833 = 10.4$ = $10\frac{5}{100}$	M1 M1 M1dep A1	Attempt to evaluate area under curve by integration soi Attempt to evaluate area under their straight line by trapezium or integration soi Subtracting areas, dep on both M marks Answer	Seen by power increased by 1. Care not to multiply by <i>x</i> <i>Ignore absence of limits for first 3</i> <i>marks</i>
	$=10\frac{12}{12}$	[4]		

6993	3		Mark S	cheme	June 201. Pains		
Question		Answer	Marks	Guidance			
12	(i)	Substitute: $75 = 900a + 30b$ 240 = 3600a + 60b	B1 B1	Allow unsimplified coefficients	40.00		
		Solve: $\Rightarrow a = \frac{1}{20}, b = 1 \Rightarrow d = \frac{1}{20}v^2 + v$	M1 A1 A1 [5]	Solve a b	ie equal coefficients and subtract or correct substitution. NB Answers given so algebra for first value found must be convincing.		
	(ii)	$D = \left(\frac{4900}{20} + 70\right) - \left(\frac{4225}{20} + 65\right)$ = 38.75	M1 A1 A1 [3]	Calculation at each value and subtraction attempted For either 315 or 276.25 soi Allow 38.8	Or 33.75 or 5		
	(iii)	Substitute: $50 = \frac{1}{20}v^2 + v$ or $v^2 + 20v - 1000 = 0$	M1 A1	Substitute Quadratic (in any form) isw	Correct application of completion of square is $(v + 10)^2 = k$ seen		
		$\Rightarrow v = \frac{-20 \pm \sqrt{400 + 4000}}{2}$	M1	Solving their quadratic using correct formula or completion of square	SCM1 for trial and improvement with values between 20 and 25. A1 ans correct to 3 sf		
		≈ 23.2 mph	A1 [4]	M1 A1 or B2 answer with no working	SCB2 If answer given with no quadratic. Final answer is anything that rounds to 23.2 <i>Ignore negative values</i>		

June	201
------	-----

				www.my
6993		Mark So	cheme	June 201.
Question	Answer	Marks	Guida	ance
13 (i)	$(2+h)^3 = 8+3.4h+3.2h^2+h^3$ = $(8+)12h+6h^2+h^3$	B1 B1 B1	For each coefficient or term that is correct Ignore incorrect identification of coefficients after expansion Mark final line	ie allow answer left in simplified expansion form.
(ii)	$(2 + h)^3 - 2^3$ (2 + h) - 2	B1 B1	Change in <i>y</i> Change in <i>x</i>	Accept description in words
	Gradient = $\frac{(2+h)^3 - 8}{2+h-2} = \frac{(2+h)^3 - 8}{h}$	B1 [3]	Only award if you are satisfied that the algebra is correct	
(iii)	$\frac{(2+h)^3 - 8}{h} = \frac{8 + 12h + 6h^2 + h^3 - 8}{h}$	M1	Or using their part (i)	
	$=\frac{12h+6h^2+h^3}{h}=12+6h+h^2$	A1 [2]		
(iv)	Their 12 in (iii)	B1	Dependent on (iii) being a polynomial.	This answer must be consistent with (iii)
(v)	$(2+h)^4 = 16+32h+24h^2+8h^3+h^4$	B1	Allow 16 + 32 <i>h</i> + (higher orders of <i>h</i>)	
	Gradient of chord = $32 + 24h + 8h^2 + h^3$ Giving 32 www	B1 B1 [3]	Allow 32 + (higher orders of <i>h</i>) Dependent on previous work	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Wednesday 5 June 2013 – Afternoon

FSMQ ADVANCED LEVEL

6993/01 Additional Mathematics

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

• Printed Answer Book 6993

Other materials required:

Scientific or graphical calculator

Duration: 2 hours

www.mymathscloud.com

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **100**.
- The Printed Answer Book consists of **20** pages. The Question Paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Formulae Sheet: 6993 Additional Mathematics

In any triangle ABC

Cosine rule

 $a^2 = b^2 + c^2 - 2bc \cos A$

Binomial expansion

When *n* is a positive integer

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n}$$

where

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Section A

- (i) Find the gradient of the line, L, whose equation is 3x + 2y = 7. 1
- www.mymathscloud.com (ii) Find the equation of the line which is perpendicular to L and which passes through the point (3, 1). [3]
- 2 Find the integers that satisfy the inequality -7 < 3x + 1 < 12.
- 3 This year John is 4 times as old as his son Paul. In 5 years' time John will be only 3 times as old as Paul. Let the age of Paul now be *x* years.

By forming an equation in x and solving it, find Paul's age now.

- You are given that θ is an acute angle and $\sin \theta = \frac{\sqrt{5}}{3}$. 4 Find the **exact** value of $\tan \theta$. [3]
- (i) Use calculus to find the stationary points on the curve $y = x^3 \frac{3}{2}x^2 6x + 3$. 5 [5]
 - (ii) Sketch the curve on the axes provided showing the stationary points and the point where it cuts the [2] y-axis.
- 6 Amanda throws 3 fair dice. What is the probability that
 - (i) exactly 2 sixes are thrown, [3]
 - (ii) at least 1 six is thrown? [3]

[4]

[4]

7 John and Jennie are asked to draw a triangle ABC with the following properties:

AC = 6 cm, CB = 4 cm and the angle $A = 40^{\circ}$.

www.mymathscloud.com John draws the triangle as shown in Fig. 7.1 and Jennie draws the triangle as shown in Fig. 7.2.

Calculate the angle B in each case.

8 A mathematical gardener has a garden which is rectangular in shape measuring 20 metres by 8 metres. He wishes to arrange the garden so that approximately half of it is lawn and the rest flower bed.

He sets up a coordinate system as shown in the diagram below and maps out the graph of the curve $v = 8x - x^2.$

Show that the area of the lawn is approximately 53% of the total area.

[6]

[4]

9 (i) Find the values of the constants a and b such that, for all values of x

5
a and *b* such that, for all values of *x*

$$x^2 + 8x + 19 = (x + a)^2 + b.$$
[3]

- (ii) Hence state the least value of $x^2 + 8x + 19$ and the value of x at which this occurs.
- (iii) Write down the greatest value of $\frac{1}{x^2 + 8x + 19}$.
- 10 One leg of a cross-country race is from A to B. The checkpoint B is at the end of a wall that runs due east-west, as shown in the diagram. A is a point 1000 m due south of a point C on the wall. BC = 2400 m.

(i) What bearing should a runner take to travel from A to B and what is the distance AB? [4]

John sets off from A unable to see the checkpoint, B. He heads out on a bearing of 055° and when he reaches the wall at point D he knows he has to go east along the wall to reach the point B, as shown in the diagram.

(ii) How much further than the distance AB does John run?

[3]

[2]

[1]

Section **B**

11 A circle has equation $(x - 2)$	$2)^2 + y^2 = 100.$
------------------------------------	---------------------

(a) Write down the radius and the coordinates of the centre, C, of this circle.

The line y = 2x + 6 cuts the circle at two points, A and B.

- (b) Find
 - (i) the coordinates of A and B, [5]
 - (ii) the midpoint, M, of AB, [1]
 - (iii) the length AB. [2]
- (c) Hence find the distance of the centre of the circle from the line AB. [2]
- 12 An object sinks through a thick liquid such that at time t seconds after being released on the surface the depth, s metres, is given by

$$s = 4t^2 - \frac{2t^3}{3}$$
 for $0 \le t \le 4$.

- (a) Find the formula for the velocity, v metres per second, t seconds after being released. Hence show that the object stops sinking when t = 4. [4]
- (b) Find
 - (i) the acceleration of the object when it is released on the surface of the liquid, [4]
 - (ii) the greatest depth of the object. [2]
- (c) On the grids provided sketch the velocity-time and acceleration-time graphs. [2]
- 13 A number of students from a group of 20 boys and 30 girls are to be selected to attend a one-day conference.

The number of girls attending must be at least the same as the number of boys but no more than twice the number of boys.

- (i) Let there be x boys and y girls selected.Given that x > 0 and y > 0, write down four more inequalities to represent the information. [3]
- (ii) Plot these inequalities on the grid provided. Indicate the region for which the inequalities hold. Shade the area that is **not** required. [5]
- (iii) In order to attend the conference the students need to be given a special uniform. The uniform for the boys costs £40 and the uniform for the girls cost £50. The school has £2000 to spend on the uniforms.

By plotting the appropriate line on your graph, find the maximum number of students that could go to the conference. [4]

- 7
- 14 A curve has equation $y = 4x^3 5x^2 + 1$ and passes through the point A(1, 0).
 - (i) Find the equation of the normal to the curve at A.
- www.mymathscloud.com (ii) This normal also cuts the curve in two other points, B and C. Show that the *x*-coordinates of the three points where the normal cuts the curve are given by the equation $8x^3 - 10x^2 + x + 1 = 0$. [2]

(iii) Show that the point B
$$\left(\frac{1}{2}, \frac{1}{4}\right)$$
 satisfies the normal and the curve. [2]

[3]

(iv) Find the coordinates of C.

THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE.

8

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Additional FSMQ

Free Standing Mathematics Qualification

6993: Additional Mathematics

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

6993	Mark Scheme June 2. June 2. June 2.	1 M ASHS
Annotations		CIOUA.C.
Annotation	Meaning	OM
~	Tick	
×	Cross	
BOD	Benefit of doubt	
FT	Follow through	
ISW	Ignore subsequent working	
MO	Method mark awarded 0	
M1	Method mark awarded 1	
AO	Accuracy mark awarded zero	
A1	Accuracy mark awarded 1	
BO	Independent mark zero	
B1	Independent mark 1	
SC	Special case	
^	Omission mark	
MB	Misread	

Subject-specific Marking Instructions

- M (method) marks are not lost for purely numerical errors.
 A (accuracy) marks depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
 B (independent) marks are independent of M (method) marks and are awarded for a correct final answer or a correct intermediate stage.
- 2 Subject to 2, two situations may be indicated on the mark scheme conditioning the award of A marks or independent marks:
 - i. Correct answer correctly obtained (no symbol)
 - ii. Follows correctly from a previous answer whether correct or not ("" on mark scheme and on the annotations tool).
- 3 Always mark the greatest number of significant figures seen, even if this is then rounded or truncated in the answer.
- 4 Where there is clear evidence of a misread, a penalty of 1 mark is generally appropriate. This may be achieved by awarding M marks but not an A mark, or awarding one mark less than the maximum.
- 5 Where a follow through () mark is indicated on the mark scheme for a particular part question, you must ensure that you refer back to the answer of the previous part question if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Abbreviations

The following abbreviations are commonly found in Mathematics mark schemes.

- Where you see **oe** in the mark scheme it means **or equivalent**;
- Where you see **cao** in the mark scheme it means **correct answer only**;
- Where you see soi in the mark scheme it means seen or implied;
- Where you see www in the mark scheme it means without wrong working;
- Where you see **rot** in the mark scheme it means **rounded or truncated**;
- Where you see **seen** in the mark scheme it means that you should award the mark if that number/expression is seen anywhere in the answer space, even if it is not in the method leading to the final answer;
- Where you see **figs 237**, for example, this means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.

Section A

699 Sect	6993 Mark Scheme Section A			ıe	June 26	AMA ASUS
(Questi	on	Answer	Marks	Rationale	-On
1	(i)		Gradient = -1.5	M1 A1 2	Attempt to rearrange to to $y =$ Mark final answer (Ans = $-1.5x$ is M1A0)	
			Alternative method:Find two points on line and then the gradient by $\frac{\Delta y}{\Delta x}$ M1(The two points must lie on the line)AnsA1			
1	(ii)		Gradient = $\frac{2}{3}$ Use (3,1) and <i>their</i> normal gradient in a standard form for a line $\Rightarrow 3y = 2x - 3$ oe	M1 M1 A1 3	soi There must be an attempt to find a normal gradient for this method mark to be earned 3 terms only	
			Alternative method: $2x - 3y = k$ B1 Sub (3,1) M1 Ans A1			

6993 Mark Scheme June 20				
Question	Answer	Marks	Rationale	
2	-7 < 3x + 1 < 12	M1	Subtract either side by 1 (or $\frac{1}{3}$ if done the other way round)	
	$\Rightarrow -8 < 3x < 11$	M1	Divide throughout by 3	
	$\Rightarrow -\frac{8}{3} < x < \frac{11}{3}$	A1	Or $-\frac{8}{3} < x$ and $x < \frac{11}{3}$	
	\Rightarrow -2, -1, 0, 1, 2, 3	A1		
			Mark final answer	
			SC1 for $x < \frac{11}{3}$ or $x > -\frac{8}{3}$ but not both	
		4		
	Alternative method:			
	Can be done by trial: B4 all correct One missing or one extra B2			
	Mark final answer			
3	John's age, 4x soi	B1	Condone use of their own letters	
	Ages in 5 yrs $x + 5$, $4x + 5$ soi	B1		
	4x + 5 = 3(x + 5)	M1		
	4x + 5 = 3x + 15			
	x = 10 No ISW	A1	SC2 Answer only with no equation formed or incorrect algebra	
		4		
	Alternative method:			
	Forming simultaneous equations:			
	Correct equations implies B1 , B1 For $i = 4n$ and $i + 5 = 3(n + 5)$			
	Give M1 only if there is an attempt to eliminate one variable.			

6993	Mark Scher	ne	J	une 20 mains
Question	Answer	Marks	Rationale	Clour
4	$\cos^2\theta = 1 - \sin^2\theta = 1 - \frac{5}{9} = \frac{4}{9}$	M1	Any use of calculators to approximate gets A0	9.com
	$\Rightarrow \cos\theta = \frac{2}{3}$	A1		
	$\Rightarrow \tan \theta = \frac{1}{2}\sqrt{5}$ ISW	A1		
		3		
	Alternative method:Find third side of triangleM1 $= 2$ A1AnsA1			

6993 Mark Scheme			June 20
Question	Answer	Marks	Rationale
5 (i)	$y = x^{3} - \frac{3}{2}x^{2} - 6x + 3$ $\Rightarrow \frac{dy}{dx} = 3x^{2} - 3x - 6$ $\Rightarrow x^{2} - x - 2 = 0 \Rightarrow (x - 2)(x + 1) = 0$ $\Rightarrow x = 2, -1$ $\Rightarrow y = -7, 6.5$ $\Rightarrow (2, -7), (-1, 6.5)$	M1 A1 M1 A1 A1 5	Diffn – all powers reduced by 1 – allow one error (beware dividing by x) All terms correct Set = 0 and solve (dependent on first M mark) Both x Both pairs (Allow this mark if the coordinated are explicitly stated in 5(ii).
(ii)		B1 B1 2	Correct shape (Cubic the right way up and two turning points, does not need three intercepts on <i>x</i> -axis) Through (0, 3), (2, -7) and (-1, 6.5). Dep on 1st B mark Allow <i>y</i> -intercept in range [2,4] At $x = 2$ allow <i>y</i> in range [-6, -8] At $x = -1$ allow <i>y</i> in range[6, 8]

6993 Mark Scheme					June 26	In at Maile
	Questi	on	Answer	Marks	Rationale	Inscloud
6	(i)		$P(2 \text{ from } 3) = \binom{3}{2} p^2 q$	B1	1 term with correct fractions and powers	, , , , , , , , , , , , , , , , , , ,
			$=3\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)$	B1	Correct coefficient of 3 attached to their probability term soi	
			$=\frac{5}{72}$ or 0.0694 oe ISW	B1	At least 3 sf Correct answer only B3	
				3		_
6	(ii)		$P(at least 1) = 1 - P(0) = 1 - q^3$	M1		
			$=1-\left(\frac{5}{6}\right)^3$	A1		
			$=\frac{91}{216}$ or 0.421	A1	At least 3 sf	
				3		
			Alternative method: M1 Add three terms $P(1) + P(2) + P(3)$ M1 Add three terms $= 0.3472 + 0.0694 + 0.0046$ A1 Three terms correct soi $= 0.421$ A1			
7			Sin rule: $\frac{\sin 40}{4} = \frac{\sin B}{6}$	M1	Sin rule or complete method via the perpendicular to find angle	
			$\Rightarrow \sin B = \frac{6 \times \sin 40}{4} (= 0.964)$	A1	Correctly applied in this case soi	
			$\Rightarrow B = 74.6$ (°) or 105.4	A1	One value	
			and 105(.4°) or 74.6	B1 4	FT $180 - their B$, unless $B = 90$	

Mark Scheme

6993	Mark Scher	heme June 20		
Question	Answer	Marks	Rationale	
8	$\int_{0}^{8} (8x - x^{2}) dx = \left[4x^{2} - \frac{x^{3}}{3} \right]_{0}^{8}$ = $4 \times 8^{2} - \frac{8^{3}}{3} = 64 \times \frac{4}{3}$ = $\frac{256}{3}$ or $85\frac{1}{3}$ or 85.3 or better Total area = 160	M1 A1 M1 A1	Increase in power of 1 in at least one term (beware multiplying by <i>x</i>) Both terms Substitute limits of 0 and their upper limit following integration (NB Limits the wrong way round M1 A0)	
	$\Rightarrow Proportion = \frac{\frac{256}{3}}{160} = \frac{256}{480} = 53.3\%$ <i>Alternative method:</i>	M1 A1 6	Dep on previous M, ratio of their ans / 160 Dep on previous A1 (NOT 53) NB The answer is given.	
	53% of 160 M1 dep on all other M marks = 84.8 The two answers related, eg both corrected to $2 \text{ sf} = 85$ A1		Dep on previous A1	
9 (i)	$x^{2} + 8x + 19 = (x + 4)^{2} + 19 - 16$ $= (x + 4)^{2} + 3$	M1 A1 A1 3	Attempt to complete square or expand rhs to give quadratic expression For 4 www For 3 NB For completion of square at least $(x \pm 4)^2$ seen	
9 (ii)	When $x = -$ their a Value is their b	B1 B1 2	FT FT	
9 (iii)	$\frac{1}{their b}$	B1 1	FT	

Mark Scheme

699)3	June 20	Nymainsens		
(Questio	on Answer	Marks	Rationale	·S.C.OUC
10	(i)	Angle CAB = $\tan^{-1} \frac{2400}{1000} = 67.4^{\circ}$ or bearing = 067° Distance = $\sqrt{1000^{\circ} + 2400^{\circ}} = 2600$ (Rounds to 2600 to 4 sf)	M1 A1 M1 A1	Mark final answer (Don't allow 67) Can be awarded if seen in part (ii)	13.COL
10	(ii)	$AD = \frac{1000}{\cos 55}$ or anything that rounds to 1743 $CD = 1000 \tan 55 \text{ or anything that rounds to 1428}$ DB = 2400 - CD = 972 AD + DB - AB = anything that rounds to 115(m)	4 B1 B1 B1	Don't accept premature approximation cao www Correct answer www B3	
		Alternative method:Sine rule on right-hand triangle $\frac{x}{\sin 22.6} = \frac{y}{\sin 12.4} = \frac{2600}{\sin 145}$ B1 (all values seen, angles rounding to 12.4 and 22.6) $x = 1742 - 1744$ $y = 971 - 973$ B1 both valuesAnswer B1		Accept a combination	

Section B

699	3	WWW. My Mark				
Sect	ion B			oneme	·	Tathscloud
(Juesti	on	Answer	Marks	Rationale	·com
11	(a)		Radius 10	B 1		
			Centre (2, 0)	<u>B1</u>		
11	(b)	(i)	Substitute $y = 2x + 6$ into $(x-2)^2 + y^2 = 100$	M1	Substitute	
			$\Rightarrow (x-2)^2 + (2x+6)^2 = 100$			
			$\Rightarrow 5x^2 + 20x + 40 = 100$			
			$\Rightarrow x^2 + 4x - 12 = 0$	A1	3 term quadratic	
			$\Rightarrow (x+6)(x-2) = 0$	M1	Solve a 3 term quadratic	
			\Rightarrow A is (-6 -6) and B is (2.10)	A1	Either both x or both y or one pair	
			\rightarrow rris (0, 0) and D is (2,10)	A1	Both pairs	
11	(h)	(ii)	$(\epsilon + 2, \epsilon + 10)$	5		
11	(0)	(11)	Midpoint AB = $\left(\frac{-6+2}{2}, \frac{-6+10}{2}\right) \Rightarrow (-2, 2)$	B1		
				1		
11	(b)	(iii)	$AB = \sqrt{(-6-2)^2 + (-6-10)^2}$	M1		
			$=\sqrt{8^2+16^2}=\sqrt{320}=8\sqrt{5}$ or 17.9	A1		
				2		
11	(c)		distance = $\sqrt{\text{radius}^2 - \text{half their (iii)}^2}$	M1		
			$=\sqrt{100-80}=\sqrt{20}=2\sqrt{5}$ or 4.47	A1		
				2		
			Alternative method:			
			Their centre to their midpoint			
			$=\sqrt{(2-2)^2+2^2}=\sqrt{20}$ M1A1			

Mark Scheme

699	3		Mark Schei	ne	June 20	Inain Stars
	Questi	on	Answer	Marks	Rationale	1.sclou
12	(a)		$v = 8t - 2t^{2}$ $v = 0 \text{ when } 8t = 2t^{2} \Longrightarrow t = 4$ or when $t = 4$, $v = 8 \times 4 - 2 \times 4^{2} = 32 - 32 = 0$	M1 A1 M1 A1	Diffn v Final answer Set = 0 or $t=4$, dep on first M1 SC3 for confirming = 0 when v divided by 2	19. COJ.
12	(b)	(i)	$v = 8t - 2t^{2}$ $\Rightarrow a = 8 - 4t$ When $t = 0, a = 8$	4 M1 A1 M1 A1 4	Diffn <i>their</i> v Set $t = 0$ dep on 1^{st} M1	_
12	(b)	(ii)	$t = 4$ gives $s = 64 - \frac{128}{3} = 21.3$	M1 A1 2	Substitute <i>t</i> =4 oe	
12	(c)			B1	Inverted parabola implies symmetry about t = 2 through (0,0) and (4,0) (sight of correct vertex not necessary)	
				B1 2	Straight line through (2, 0) and (0, <i>their</i> 8) (4, <i>–their</i> 8)	

June	e 20
Julie	; 24

6993		Mark Scher	ne	June 20	NH NA
Ques	stion	Answer	Marks	Rationale	· ⁵ 5/0
13	(i)	$x \le 20, y \le 30$ $y \ge x$ $y \le 2x$	B1 B1 B1 2	Condone < for \leq and > for \geq Ignore extras (including for instance, $x + y \leq 50$)	
13	(ii)	$\begin{array}{c} 50\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	3 B1 B1 B1 B1 B1 5	x = 20 y = 30 y = x y = 2x Shading Ignore any shading that may relate to 13(iii)	
13	(iii)	The line is $40x + 50y = 2000$	B1 B1	accept inequality soi (accept written in (ii)) Draw line (Correct line seen on graph is B2)	
		(20, 24) Total = 44 www	B1 B1 4	Point soi Total (Total of 44 seen with nothing else is B2)	

699	3		Mark Schen	1e	lune 21	111 13
	Juesti	0 n	Answor	Marks	Rationale	aths clo
14	Zucsin	(i)	$\frac{dy}{dy - 12r^2} = 10r$	MIII NS	Differend sub $n = 1$	
			$\frac{1}{dx} = 12x - 10x$		Diffinand sub $x = 1$	
			when $x = 1, m = 2$	AI	www	
			\Rightarrow gradient of normal = $-\frac{1}{2}$	A1	FT <i>their</i> numerical <i>m</i> soi	
			\Rightarrow Equation is $y - 0 = -\frac{1}{2}(x - 1)$	M1	Find eqn of line dep on M1 and <i>their</i> normal gradient	
			$\Rightarrow 2y + x = 1$	A1	oe $\left(eg \ y = -\frac{1}{2}x - \frac{1}{2} \right)$	
				5	<u> </u>	
14		(ii)	$-\frac{1}{2}(x-1) = 4x^3 - 5x^2 + 1$	M1	Substitute their equation	
			$\Rightarrow 1 - x = 8x^3 - 10x^2 + 2$			
			$\Rightarrow 8x^3 - 10x^2 + x + 1 = 0$	A1 2	At least 1 correct intermediate step seen, beware answer given	
14		(iii)	For line: $y = -\frac{1}{(1-1)} = -\frac{1}{x} - \frac{1}{1} = \frac{1}{0}$ oe	B1	Substitute into <i>correct</i> line	
			2(4) 2 2 4			
			For curve: $y = 4\left(\frac{1}{2}\right)^3 - 5\left(\frac{1}{2}\right)^2 + 1 = \frac{1}{2} - \frac{5}{4} + 1 = \frac{1}{4}$	B1	Substitute into curve	
				2		

6993		Mark Scheme Jun		
(Question	Answer	Marks	Rationale
14	(iv	$f(x) = 0 \text{ when } x = 1 \text{ and } \frac{1}{2}$ $\Rightarrow f(x) = (x-1)(2x-1)(4x+1)$	M1	f(x) = (x - 1)(2x - 1)(ax + b) oe
		$\Rightarrow x = -\frac{1}{4}$	A1	or $f(x) = (x - 1)(x - \frac{1}{2})(cx + d)$ NB The working for this part may appear elsewhere but can only be credited if their final answer is seen here.
		$y = \frac{5}{8}$ $\Rightarrow C \text{ is } \left(-\frac{1}{4}, \frac{5}{8}\right) \mathbf{www}$	A1 3	
		Alternative method:Long division by $(x-1)$ and $(2x-1)$ or by one given factor plusattempt to factorise resulting quadraticor by $(2x^2-3x+1)$ M1Giving third rootA1AnswerA1		Evidence of long division on cubic is correct first line of long division plus kx^2 in the quotient

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2013

Friday 6 June 2014 – Afternoon

FSMQ ADVANCED LEVEL

6993/01 Additional Mathematics

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

Printed Answer Book 6993/01

Other materials required:

Scientific or graphical calculator

Duration: 2 hours

www.mymathscloud.com

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **100**.
- The Printed Answer Book consists of **20** pages. The Question Paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

In any triangle *ABC*

Cosine rule

Binomial expansion

When *n* is a positive integer

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

 $a^2 = b^2 + c^2 - 2bc \cos A$

where

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Section A

1 Solve the following.

3
Section A
$$-6 < 2x - 1 < 7$$
 [3]

2 The gradient function of a curve that passes through the point (1, 2) is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x + 7.$$

Find the equation of the curve.

- 3 (i) Find the area enclosed between the curve $y = 8x^3$, the x-axis and the line x = 2. [3]
 - (ii) Hence, or otherwise, deduce the area between the x-axis, the y-axis, the line x = 2 and the curve $y = 8x^3 + 5$. [1]
- 4 A train travels from station A to station B. It starts from rest at A and comes to rest again at B. The displacement of the train from A at time t seconds after starting from A is s metres where

$$s = 0.09t^2 - 0.0001t^3.$$

- (i) Find the velocity at time t seconds after leaving A and hence find the time taken to reach B. Give the units of your answer. [4]
- (ii) Find the distance between A and B. Give the units of your answer. [2]
- A ship is moving on a bearing of 025° at 14 knots (1 knot = 1 nautical mile per hour). As it passes point 5 A, a lighthouse L is seen on a bearing of 340°. After 30 minutes, the ship passes point B from where the lighthouse is seen on a bearing of 320°.

Not to scale

(i) Find the angle BAL and the angle ALB.

[3]

[3]

[4]

(ii) Hence, or otherwise, calculate the distance BL in nautical miles.

	4	Myma 14 184
6	The function $f(x) = x^3 - 4x^2 + ax + b$ is such that	Sthsclour
	 x = 3 is a root of the equation f(x) = 0, when f(x) is divided by (x - 1) there is a remainder of 4. 	Y.COM
	(i) Find the value of <i>a</i> and the value of <i>b</i> .	[4]
	(ii) Solve the equation $f(x) = 0$.	[3]
7	The points A and B have coordinates (3, 7) and (5, 11) respectively.	
	(i) Find the exact length of AB.	[2]
	(ii) Find the equation of the circle with diameter AB.	[3]
8	Four points have coordinates A(-5 , -1), B(0, 4), C(7, 3) and D(2, -2).	
	(i) Using gradients of lines, prove that ABCD is a parallelogram.	[2]
	(ii) Using lengths of lines, prove further that ABCD is a rhombus.	[2]
	(iii) Prove that ABCD is not a square.	[2]
9	(i) Show that $\frac{1 - \cos^2 x}{1 - \sin^2 x} = \tan^2 x$.	[1]
	(ii) Hence solve the equation $\frac{1-\cos^2 x}{1-\sin^2 x} = 3 - 2\tan x$ for values of x in the range $0^\circ \le x \le 180^\circ$.	[4]

10 (i) Find the coordinates of the point P on the curve $y = 2x^2 + x - 5$ where the gradient of the curve is 5. [3]

(ii) Find the equation of the normal to the curve at the point P. [3]

© OCR 2014

Section **B**

www.mymathscloud.com Kala is making an open box out of a rectangular piece of card measuring 30 cm by 14 cm. She cuts squares 11 of side *x* cm out of each corner and turns up the sides to form the box.

(i) Find an expression in terms of x for the volume, $V \text{cm}^3$, of the box and show that this reduces to

$$V = 4x^3 - 88x^2 + 420x.$$
 [4]

- (ii) Find the two values of x that give $\frac{dV}{dx} = 0$. [5]
- (iii) Explain why one of these values should be rejected and find the maximum volume of the box using the other value. [3]
- 12 Paul walked from Anytown to Nexttown, a distance of 15 km. When he got there he then walked back. His average speed on the return journey was 2 km per hour less than on the outward journey.

Let Paul's average speed on the outward journey be $x \text{ km} \text{ hr}^{-1}$.

(i) Write down an expression for the time, in hours, taken for the whole journey. [2]

The time taken by Paul for the whole journey was 6 hours.

(ii) Use your expression in (i) to form an equation in x and show that it simplifies to

$$x^2 - 7x + 5 = 0.$$
 [4]

- (iii) Solve this equation to find Paul's average speed on the outward journey. [3]
- (iv) Find the difference in time between the outward and return journeys. Give your answer to the nearest minute. [3]

www.mymathscloud.com A company needs to buy some storage units. There are two types of unit available, type X and type 13 The cost of each type of unit, the floor space required and the volume for storage are given in the following table.

	Cost per unit (£)	Floor space required (m ²)	Volume for storage (m ³)
Х	100	2	3.5
Y	120	1.5	3

The maximum cost allowed for the purchase of the units is £1200 and the maximum floor space available is $18 \,{\rm m}^2$.

The company wants to maximise the volume for storage.

Let x and y be the number of each type of unit, X and Y, respectively.

- (i) Write down an inequality for the total cost and an inequality for the total floor space required. [3]
- (ii) Draw the inequalities you gave in (i) on the grid provided in the answer book. Given that $x \ge 0$ and $y \ge 0$, indicate the region for which the inequalities hold by shading the area that is **not** required. [4]
- (iii) Write down the objective function for the volume for storage and find the combination of units that should be bought to maximise the volume for storage. Write down this maximum volume. [5]

[4]

- 14 Mugs are packed in boxes of 10. On average, 5% of the mugs are imperfect. A box of mugs is classified as "unsatisfactory" if it contains two or more imperfect mugs.
 - (i) State two conditions that must be satisfied for the number of imperfect mugs in a box to have a binomial distribution. [2]
 - (ii) Assuming that these two conditions are satisfied, calculate the probability that a box chosen at random is "unsatisfactory". [6]

A shop receives a delivery of a large number of boxes of mugs. The delivery is checked as follows.

A box is chosen at random.

- If there are no imperfect mugs in the box then the whole delivery is accepted.
- If the box is "unsatisfactory" then the whole delivery is rejected.
- If there is exactly one imperfect mug in the box then a second box is chosen at random. The delivery is accepted only if this box contains no imperfect mugs.
- (iii) Calculate the probability that the delivery is accepted.

THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE.

8

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

FSMQ

Additional Mathematics

Unit 6993: Additional Mathematics

Free Standing Mathematics Qualification

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

Annotations and abbreviations

6993	Mark Scheme June June
Annotations and abbrevi	iations
Annotation in scoris	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured)
— •	and on each page of an additional object where there is no candidate response.
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for 6993

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Mark Scheme

6993

Munu My Mainscloud com Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument. Unless otherwise stated (by for instance, cao usually apply isw

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme d specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect е results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- Rules for replaced work g

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

Mark Scheme

unu.mymainscioud.com For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain h unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Section A

6993 Section A			Ma	ark Scheme	June 20 Mainscioud.co
Que	stion	Answer	Marks	Guidar	nce
1		-6 < 2x - 1 < 7			
		$\Rightarrow -5 < 2x < 8 \Rightarrow -\frac{5}{-1} < x < 4$ isw	B1	One end point	Condone incorrect signs (including
		2	B1	The other	equals) for first 2 marks. Ignore
				Both together - accent 2 separate	listings.
			B1	inequalities linked by "and" cao	but not "or" or comma or nothing
			[2]	B3 Final answer seen www	
			[3]		
		S.C. If solution only given as number line			
		with two clear open circles at ends then B2			

Q	uestio	n Answer	Marks	Guidance		
2		$\frac{dy}{dx} = 3x^2 - 4x + 7$ $\Rightarrow y = x^3 - 2x^2 + 7x + c \mathbf{0e}$ Substitute (1, 2) $\Rightarrow 2 = 1 - 2 + 7 + c$	M1 A1 M1	Integrate (at least 2 powers increased by 1) Ignore lack of $y = \text{and } c$ Dependent on 1st M	Beware just multiplying by <i>x</i>	
		$\Rightarrow c = -4$ $\Rightarrow y = x^3 - 2x^2 + 7x - 4$	A1 [4]	Final equation must be seen	Must include $y = and -4$ Condone $f(x) =$	

Mark Scheme

69	93		Ма	irk Scheme	June 20 Maths
Q	uestion	Answer	Marks	Guida	nce
3	(i)	Area = $\int_{0}^{2} 8x^{3} dx = [2x^{4}]_{0}^{2}$ = 32 (-0) = 32	M1 M1 A1 [3]	Integrate correct function (power of 4 soi). Ignore wrong or no limits Substitute $x = 2$. Dependent on first M	Beware just multiplying by x i.e. $8x^4$
	(ii)	Add a rectangle of area 10 \Rightarrow Total area = 42	B1 [1]	ft Addition of 10 must be correct!	Can be by integration

(Question		Answer		Guidan	ice
4	(i)		$s = 0.09t^2 - 0.0001t^3$ $\Rightarrow v = 0.18t - 0.0003t^2$ isw	M1	Diffn (both powers reduced by 1).	Beware division by <i>t</i> .
			When $v = 0$, $t = 0$ or $t = \frac{0.18}{0.0003} = 600$	M1	Set $v = 0$ and any attempt to solve. Dependent on first M.	Condone division by <i>t</i> or a constant when expression not set to 0
			Time = 600 seconds or 10 mins isw	A1	Units required.	
				[4]		
	(ii)		Substitute <i>their t</i> into <i>s</i>	M1		
			\Rightarrow s = 10800 m or 10.8 km isw	A1	Units required, but only withhold this mark for units wrong or missing if not already withheld in part (i).	
				[2]		

6993		Answer	Mark Scheme Answer Marks Guidance				
5	(i)	Angle $BAL = 20 + 25 = 45$ Angle $ABL = 180 - 65 = 115$ soiOR exterior angle = 65 soiOR angle $LBN = 40$ soiAngle $ALB = 20$	B1 B1 B1 [3]	Or B2 for ALB www	BAL and ALB must be correctly identified (not from use in (ii))		
	(ii)	$AB = 7 \text{ soi}$ $\frac{LB}{\sin 45} = \frac{AB}{\sin 20} \left(= \frac{7}{\sin 20} \right)$ $\Rightarrow LB = \frac{7 \sin 45}{\sin 20} = 14.5$	B1 M1 A1 [3]	For <i>their</i> AB and <i>their</i> angles. Anything that rounds to 14.5			

Q	Question		Answer	Marks	Guidance	
6	(i)		$f(3) = 0 \Longrightarrow 27 - 36 + 3a + b = 0$ or better	B1	e.g. $3a + b = 9$.	Powers need to be evaluated
			$f(1) = 4 \implies 1 - 4 + a + b = 4$ or better	B1	e.g. <i>a</i> + <i>b</i> = 7	Powers need to be evaluated
			Solve <i>their</i> simultaneous eqns from above	M1	Attempt to find <i>a</i> and <i>b</i> from <i>their</i> eqns	Their working need not be correct
			$\Rightarrow a = 1, b = 6$	A1		
				[4]		
	(ii)		Sight of $(x-3)(x^2 + px + q)$ for any p , q	M1	Or attempt to find another root of <i>their</i>	Algebraic division seen by $x^2 +$
			Or algebraic division		<i>cubic</i> by remainder theorem soi	in quotient and $x^3 - 3x^2$ in division
			$\Rightarrow (x-3) (x+1)(x-2) = 0$	A1	For correct complete factorisation soi by final answer	
			\Rightarrow (<i>x</i> =) 3, 2, -1	Al	Correct solution	
				[3]		

69	93		Ma	ark Scheme	June 20 Mansers
Q	uestio	n Answer	Marks	Guida	ance
7	(i)	Distance ² = $5-3^{2} + 11-7^{2}$ (= 20)	M1	Soi e.g. by 4.47	d = 20 is M0
		\Rightarrow distance = $\sqrt{20}$ = $2\sqrt{3}$	[2]	Must be exact isw	
	(ii)	Centre = midpoint = $(4, 9)$	B1	Centre	
		Radius = $\sqrt{5}$ or decimal equivalent	B1	Radius soi by for e.g. $r^2 = 5$	
		$\Rightarrow x-4^2 + y-9^2 = 5$	B 1	ft <i>their</i> identified centre (but don't accept A or B) isw	Rhs must be 5, not $\sqrt{5}^2$
		OR $x^2 + y^2 - 8x - 18y + 92 = 0$			
		Alternative:			
		$\frac{y-11}{x-5} \cdot \frac{y-7}{x-3} = -1$	B1	Use of $m_1m_2 = -1$	
		$\Rightarrow y-11 y-7 + x-5 x-3 = 0$	B1		
		$\Rightarrow x^2 + y^2 - 8x - 18y + 92 = 0$	B1		
			[3]		

Mark Scheme

6993		Mark Scl	heme	June 20
Question	Answer	Marks	Gui	dance
8 (i)	Grad AB = Grad CD = 1 $\left(=\frac{41}{05}\right)$ and $\left(=\frac{-2-3}{2-7}\right)$ oe	B1	For showing one pair of gradients equal and correct www	bod no working but care about seeing $\frac{\delta x}{\delta y}$
	Grad BC = Grad AD = $-\frac{1}{7}\left(=\frac{3-4}{7-0}\right)$ and $\left(=\frac{-21}{25}\right)$ Two pairs of parallel sides (means ABCD parallelogram)	B1	For showing other pair of gradients equal and correct plus completion	Final statement is necessary. Condone 2 pairs of equal gradients (providing they are correct)
(ii)	$AB^2 = 5^2 + 5^2$ (=50) oe for any side	[2] B1	One length (or squared length)	
	$BC^{2} = 1^{2} + 7^{2} (=50)$ $\Rightarrow AB^{2} = BC^{2} (=50)$ Equal sides (means rhombus)	B1	For adjacent length plus completion www	Final statement is necessary
(iii)	Gradients do not fulfil m_1 . $m_2 = -1$ oe	M1	For use of m_1 . $m_2 = -1$	i.e. 2nd gradient not the negative reciprocal of the other
	ie $1 \times -\frac{1}{7} \neq -1$ Therefore lines not perpendicular	A1 [2]	Gradients must be correct.	Final statement is necessary.
	 Alternatives: A: Use of cosine rule Does not give 90⁰ B: Use of Pythagoras 	M1 A1 M1	www	
	Not satisfied therefore not 90° C: Use of pythagoras to find length of diagonals (i.e. $\sqrt{160}$ and $\sqrt{40}$)	A1 M1	WWW	
	Diagonals not equal	AI	www	

699	3			Ma	ark Scheme	June 26 June 10 Mainser
Q	uestic	n	Answer	Marks	Gui	idance Our
9	(i)		$\frac{1 - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x}{\cos^2 x} = \tan^2 x$	B 1	Use of $\frac{\sin x}{\cos x} = \tan x$	4.com
				[1]	and use of $\sin^2 x + \cos^2 x = 1$	
	(ii)		$\frac{1 - \cos^2 x}{1 - \sin^2 x} = 3 - 2\tan x$			
			$\Rightarrow \tan^2 x = 3 - 2\tan x$ $\Rightarrow \tan^2 x + 2\tan x - 3 = 0$	M1	Correct use of (i)	
			$\Rightarrow \tan x + 3 \tan x - 1 = 0$	M1	Factorise their three term quadratic or insertion of <i>their</i> values into correct formula Dep on 1st M	(Check the two linear factors by whether they multiply out to give the first and last terms of their quadratic.)
			$\Rightarrow \tan x = -3$ or $\tan x = 1$		-	
			$\Rightarrow x = 108(.4) \text{ or } 45$	A1A1	-1 for any other values inside range, ignore extra values outside range	
				[4]		

Question		n	Answer	Marks	Guidance	
10	(i)		$y = 2x^2 + x - 5 \implies \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 4x + 1$	B 1		
			=5	M1	Equating to 5 and solving	
			$\Rightarrow x = 1, y = -2$	A1	For both	
				[3]		
	(ii)		gradient normal = $-\frac{1}{5}$	B 1	Gradient of normal soi	
			$\Rightarrow (y+2) = -\frac{1}{5} x - 1$	M1	Equation using <i>their</i> $(1, -2)$ and <i>their</i> normal gradient (which may only be $\pm \frac{1}{5}$ or -5)	
			$\Rightarrow 5y + x + 9 = 0$	A1 [3]	oe, but only 3 terms isw	

Section B

6993 Sectio	on R		Ма	rk Scheme	June 20 June 10
Ques	stion	Answer	Marks	Guidan	ce
11 (i))	Length = $30 - 2x$ Breadth = $14 - 2x$ (Height = x) $\Rightarrow V = (30 - 2x)(14 - 2x)x$	B1 B1 M1	Soi Soi Product of <i>their</i> length, breadth and <i>x</i>	N.B. dimensionally correct
		$= 4x^{2} - 88x + 420 x \qquad \text{oe}$ $= 4x^{3} - 88x^{2} + 420x$	A1 [4]	www; must show at least one product of any two lengths step (N.B. Answer given)	e.g = $(30-2x)(14x-2x^2)$ Length and breadth must be functions of x
(ii	i)	$V = 4x^{3} - 88x^{2} + 420x$ $\frac{dV}{dx} \Rightarrow 12x^{2} - 176x + 420 \text{ isw}$	M1 A1	Diff (at least two powers reduced by 1)	Beware division by <i>x</i> . Condone prem div by a constant.
		= 0 when $12x^2 - 176x + 420 = 0$ $\Rightarrow 3x^2 - 44x + 105 = 0$	M1	Set <i>their function</i> = 0 Dep on 1st M Soi by solution	
		$\Rightarrow 3x - 35 x - 3 = 0$	M1	Factorise three term quadratic or insertion of <i>their</i> values into correct formula	(Check the two linear factors by whether they multiply out to give the first and last terms of their quadratic.)
		$\Rightarrow x = \frac{35}{3} \text{ or anything that rounds to } 11.7, x = 3$ S.C. Answers only B1, B1	A1 [5]	Both	
(ii	ii)	$x = \frac{35}{3}$ should be rejected as it is over half of 14 Substitute an acceptable x into V (0 < x < 7) Volume = 576	M1 [3]	ft from <i>their</i> incorrect <i>x</i> Explanation necessary (e.g. one length is -ve) Alt: use of second derivative acceptable. Ignore units	" <i>V</i> is -ve" as the only explanation not accepted. Nor is " <i>x</i> is too big".

993	Mark Scheme June 2				
uestion	AnswerTime out = $\frac{15}{x}$, Time back = $\frac{15}{x-2}$	Marks	Guidance		
2 (i)		B1	For one		
	Total time = $\frac{15}{x} + \frac{15}{x-2}$	B1	Addition of two correct terms isw		
		[2]			
(ii)	$\frac{15}{x} + \frac{15}{x-2} = 6$	B1	Equate <i>their</i> time to 6	3 might be divided throughout here	
	$\Rightarrow 15 \ x-2 \ +15x = 6x(x-2)$	M1	Multiply throughout by LCM	LCM implies 2 different algebraic denominators	
	$15x - 30 + 15x = 6x^2 - 12x \mathbf{oe}$	A1	Brackets cleared	N.B. Algebra might have been done in (i)	
	$\Rightarrow 6x^2 - 42x + 30 = 0$				
	$\Rightarrow x^2 - 7x + 5 = 0$	A1	www At least one interim step must be seen. N.B. Answer given		
(iii)	2 7 . 5 0	[4]			
	$x - 7x + 5 = 0$ $\Rightarrow x = \frac{7 \pm \sqrt{49 - 20}}{2} = \frac{7 \pm \sqrt{29}}{2}$	M1 A1	Use of correct formula with given		
	2 2 or 6.19 and 0.807		equation	Condone 0.81 or 0.8 but not 6.2	
	(Paul's speed) = 6.19 km hr ⁻¹	A1	+ units but only if <i>their</i> 0.807 is discarded	N.B. If 3 marks not awarded then look for the S C.	
		[3]			
	S.C (Paul's speed) is 6.19 km hr ⁻¹ B2 or $x = 6.19$ B1				
(iv)	15 15 15 15	M1	Sub <i>their x</i> into correct expression	Or the simplified expression	
	$\frac{1}{x-2} - \frac{1}{x} = \frac{1}{4.19} - \frac{1}{6.19}$		Or sub <i>their x</i> into the two separate	Accept other way round giving a	
			correct expressions for time and then subtract	negative value	
	Sight of 3.58 or 2.42 or 1.16	B1			
	69 or 70 mins or 1 hr 9 mins or 1 hr 10 mins	A1	Answer correct in minutes		

6993		Mark Scheme June 20		
Question	Answer	Marks	Guidance	
13 (i)	$100x + 120y \le 1200$ oe $2x + 1.5y \le 18$ oe	M1 A1 A1 [3]	Attempting to use information to create an inequality Ignore extra inequalities	Seen by one LH side Condone use of <
(ii)		B1 B1 B1 B1 B1 [4]	One line (allow intercepts ±0.1) Other line (allow intercepts ±0.1) Shading one line – 1 st quad only Shading other line – 1 st quad only N.B. Shading below a line gets B0	 N.B. Candidates may get inequalities wrong in (i) but get the shading correct in (ii) - this should be allowed. Allow ft for shading of wrong line but only if the gradient is -ve Allow ft for shading of wrong line but only if gradient is -ve and the two lines intersect in the 1st quadrant (not on axes)
(iii)	(P =) 3.5x + 3y e.g. (9, 0) gives 31.5, (0, 10) gives 30 (4, 6) gives 32, (5, 5) gives 32.5 (3, 7) gives 31.5 (6, 4) gives 33 (6, 4) gives 33 S.C. for last 4 marks. (6,4) gives 33 B2 Either 33 or (6,4) B1	B1 M1 A1 A1 A1 [5]	test at least two integer points in correct feasible region in correct OF Both points correct. Ignore any others For (6, 4) chosen For 33	Ignore any equating to a number i.e. the point must be identified as the maximum.

Mark Scheme

6993 Mark Scheme June 20					June 20 Mains
Question		Answer	Marks	Guidance	
14	(i)	Probability remains constant Imperfection of mugs independent	B1 B1 [2]		Not "Random"
	(ii)	$p = \frac{1}{20}, q = \frac{19}{20}$	B1	Soi	
		P(0 or 1) = $\left(\frac{19}{20}\right)^{10} + 10\left(\frac{19}{20}\right)^{9}\left(\frac{1}{20}\right)$	M1 A1	$q^{10} + kpq^9$ attempted, k an integer > 0 p + q = 1 k = 10 soi	For k Not $\begin{pmatrix} 10 \\ 1 \end{pmatrix}$ or ${}^{10}C_1$
		= 0.5987 + 0.3151 = 0.9139 P(≥ 2) = 1 - 0.9139 = 0.086	A1 M1 A1	soi accept rounding to 3dp Dependent on previous M (Anything that rounds to 0.086)	
	(iii)	$P(accepted) = P(0 \text{ imperfect}) + P(1 \text{ imperfect}) \times P(0 \text{ imperfect})$	[6] M1	Correct plan soi by both correct terms	Words only sufficient
		$\left(\frac{19}{20}\right)^{10} + 10\left(\frac{19}{20}\right)^9 \left(\frac{1}{20}\right) \left(\frac{19}{20}\right)^{10}$ = 0.5987 + 0.1887	A1 A1	Correct 1st term (as an expression) soi Correct 2 nd term (as an expression including the 10) soi	soi by final answer
		=0.787(4)	A1	Accept 0.788	Anything that rounds to 0.787 or 0.788
		Alternative:	[4]		Words only sufficient
		P(accept) = 1 - (Ans to (ii) + P(1)×P(at least 1)) = 1 - (ans to (ii) + P(1)×(1-P(0)))	M1	Correct plan soi by both correct terms taken from 1	
		= 1 - (0.0861 + 0.1264) = 1 - 0.213 $= 1 - (0.0861 + 0.1264) = 1 - 0.213$	A1 A1	Ft Using <i>their</i> ans to (ii) 2nd term as an expression soi by final answer	
		= 0.787(4)	A1		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Wednesday 3 June 2015 – Morning

FSMQ ADVANCED LEVEL

6993/01 Additional Mathematics

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

Printed Answer Book 6993/01

Other materials required:

і))) Д

Scientific or graphical calculator

Duration: 2 hours

www.mymathscloud.com

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **100**.
- The Printed Answer Book consists of **20** pages. The Question Paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Formulae Sheet: 6993 Additional Mathematics

In any triangle ABC

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

Binomial expansion

When *n* is a positive integer

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

where

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Section A

3

- www.mymathscloud.com Find the equation of the line which is perpendicular to the line 2x + 3y = 5 and which passes through the 1 point (3, 4).
- 2 Find α in the range $0^{\circ} \le \alpha \le 180^{\circ}$ such that $\tan \alpha = -1.5$. (i) [2]
 - Find β in the range $0^{\circ} \le \beta \le 180^{\circ}$ such that $\sin \beta = 0.2$. (ii) [2]
- Find the equation of the tangent to the curve $y = x^3 + 3x 5$ at the point (2, 9). 3 [5]

4 (i) Find
$$\int_{1}^{2} (x^2 + 2x + 3) dx$$
. [4]

- (ii) Interpret your answer geometrically. [1]
- 5 A train accelerates from rest from a point O such that at t seconds the displacement, s metres from O, is given by the formula $s = \frac{3}{2}t^2 - 2t + 3$.
 - Show by calculus that the acceleration is constant. (i) [3] Find the velocity after 5 seconds. [2] (ii)
- 6 You are given that *n* is a positive integer and (n-1), n, (n+1) are three consecutive integers.

In each of the following cases form an equation in *n* and solve it.

- (i) The three integers add up to 99. [2]
- When the product of the first integer and third integer is added to 5 times the second integer the sum (ii) is 203. [4]

- 7 (i) Solve algebraically the simultaneous equations $y = 3 + 5x x^2$ and y = x + 7.
 - (ii) Interpret your answer geometrically.
- 8 The cubic polynomial $f(x) = x^3 + ax + 6$, where *a* is a constant, has a factor of (x + 3).
 - (i) Find the value of *a*.
 - (ii) Hence or otherwise, solve the equation f(x) = 0 for this value of a.
- 9 The equation of the circle C is $x^2 + y^2 8x + 2y 19 = 0$.
 - (i) Express the equation of C in the form $(x-a)^2 + (y-b)^2 = r^2$.
 - (ii) Hence or otherwise, use an algebraic method to decide whether the point (8,3) lies inside, outside or on the circumference of the circle.Show all your working.
- 10 Fig. 10 shows a partly open window OA, viewed from above. The window is hinged at O. When the window is closed, the end A is at point B. The window is kept open by a rod CD, where C is a fixed point on the line OB.

The point D slides along a fixed bar EF. When the window is closed, D is at F. When the window is fully open, D is at E.

OA = OB = 20 cm, OC = 8 cm, CD = 7 cm, EF = 5 cm, OE = 10 cm

Fig. 10

Find

- (i) angle EOC when the window is fully open, [3]
- (ii) the distance OD when angle EOC is 30° .

[4]

www.mymainscloud.com

[2]

[4]

[4]

Section **B**

www.mymathscloud.com Two curves, S₁ and S₂ have equations $y = x^2 - 4x + 7$ and $y = 6x - x^2 - 1$ respectively. The curves meet at 11 A and at B.

Fig. 11

(i) Show that the coordinates of A and B are (1, 4) and (4, 7) respectively. [2]

Points P and Q lie on S_2 and S_1 between A and B. P and Q have the same x coordinate so that PQ is parallel to the y-axis, as shown in Fig. 11.

(ii)	Find an expression, in its simplest form, for the length PQ as a function of x .	[2]
(iii)	Use calculus to find the greatest length of PQ.	[4]
(iv)	Find the area between the two curves.	[4]

- A distributor of flower bulbs has a large number of tulip bulbs and daffodil bulbs, mixed in the ratio 1:3 12 respectively. He packs the bulbs in boxes. He puts 10 bulbs, chosen at random, into each box.
 - (a) Find the probability that a box, chosen at random, contains

(i) exactly 4 daffodil bulbs,	[4]
(ii) at least 1 tulip bulb.	[3]

(b) Two boxes of bulbs are chosen at random.

Find the probability that there is a total of 3 tulip bulbs in the two boxes. [5]

www.mymathscloud.com A gardener marks out a regular hexagon ABCDEF on his horizontal garden. 13 Each side of the hexagon is 0.5 m. The gardener sticks a cane in the ground at each point of the hexagon. He joins the six canes at V where V is vertically above the centre, O, of the hexagon, as shown in Fig. 13. Each cane has a length of 2.4 m from the ground to V.

Fig. 13

Calculate, giving your answers to 3 significant figures,

(i)	the vertical height of V above the ground,	[3]
(ii)	the angle between each cane and the ground,	[2]
(iii)	the angle between the plane VAB and the ground.	[4]
The	gardener stretches a horizontal wire around the structure to strengthen it. He fixes the wire to each	cane

at a point 1 m vertically above the ground.

(iv) Find the length of the wire.

[3]

	mm w
	7
14	A company produces bottles of two liquids, X and Y. There are two ingredients, A and B, in each liquid.
	The table shows the quantities, in centilitres (cl), of A and B needed for each bottle of liquid.

	А	В
Х	4	2
Y	3	5

Each day the company can use 84 cl of A and 90 cl of B.

From this information an analyst writes down the inequality $4x + 3y \le 84$.

- Explain what x and y stand for in this inequality and explain what the inequality models. (i) [2]
- Use the information given to write down another inequality, other than $x \ge 0$ and $y \ge 0$. (ii) [1]
- On the grid given in the answer booklet, illustrate your two inequalities. Shade the region that is not (iii) required. [3]
- (iv) The company needs to produce the same number of bottles of X and of Y each day.

Find the maximum number of bottles of X and of Y that the company can produce. [2]

(v) On one day the company does not have to produce the same numbers of bottles of X and of Y.

Write down the maximum number of bottles that can be produced and all the combinations that will give this maximum. [4]

PLEASE DO NOT WRITE ON THIS PAGE

8

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

FSMQ

Additional Mathematics

Unit 6993: Additional Mathematics

Free Standing Mathematics Qualification

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Annotations and abbreviations

6993	Mark Scheme June ≥ June ≥	MU Notes
Annotations and abbrev	viations	this cloud
Annotation in scoris	Meaning	, COU
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.	
✓and ×		
BOD	Benefit of doubt	
FT	Follow through	
ISW	Ignore subsequent working	
M0, M1	Method mark awarded 0, 1	
A0, A1	Accuracy mark awarded 0, 1	
B0, B1	Independent mark awarded 0, 1	
SC	Special case	
^	Omission sign	
MR	Misread	
Highlighting		-
Other abbreviations in mark scheme	Meaning	-
	Method mark dependent on a previous mark, indicated by "Dep on 1st M"	
сао	Correct answer only	1
oe	Or equivalent	1
soi	Seen or implied	7
WWW	Without wrong working	

1. Marking Instructions

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Mark Scheme

June > Mainscloud.com Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect е results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- Rules for replaced work g

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Section A

6993 Section A		June 26 Mainscioud.				
Q	uest	ion	Answer	Marks	Guida	nce
1			Line is $3x - 2y = k$	B1	oe	
			Satisfied by $(3, 4) \implies k = 1)$	M1	Substitution soi	
			$\Rightarrow 3x - 2y = 1$	AI	oe isw Only 3 terms	
				3		
			Alternatively:	D1	Sai from a sustion	Condone $g = \frac{3}{x}$
			$g = -\frac{2}{3} \Rightarrow \text{new } g = \frac{3}{2}$	BI	Sol from equation	2
			$\Rightarrow (y-4) = \frac{3}{2}(x-3)$	M1	Their normal gradient and (3,4) used	Only allow if correct or if their g
			$\Rightarrow 2y = 3x - 1$	A1	oe isw Only 3 terms	and the negative reciprocal is seen. i.e. only one constant term
			Alternatively:	D1		Condone $g = \frac{3}{x}$
			$g = -\frac{2}{3} \Rightarrow \text{new } g = \frac{3}{2}$	BI	Sol from equation	2
			$\Rightarrow y = \frac{3}{2}x + c$	M1	<i>Their</i> normal gradient and (3,4)	Only allow if correct or if their <i>g</i>
			$\frac{2}{3}$ 1		substituted	and the negative reciprocal is seen.
			$\Rightarrow y = \frac{3}{2}x - \frac{1}{2}$	A1	oe isw Only 3 terms	e.g. $y = \frac{3x-1}{2}$

69	93			Mar	·k Scheme	June 20 June 10 June 20
(Quest	ion	Answer	Marks	Guida	ince
2	(i)		$\tan \alpha = -1.5 \Rightarrow \alpha = 123.69()^{\circ}$ or 123.7° or 124°	B2	B1 sight of ±56.3° or 304° or 303.7° or 303.69° or 123.6° -1 from full marks for extra values in range. Ignore values outside range.	Ignore lack of degree sign. No marks for answers in radians.
	(ii)		11.5° or anything that rounds to 11.5° and 168° or anything that rounds to 168.5°	2 B1 B1 2	 –1 from full marks for extra values in range. Ignore values outside range. 	Ignore lack of degree sign. No marks for answers in radians.

Quest	ion	Answer	Marks	Guida	nce
3		dy $2^2 + 2$	M1	Diffn	Powers reduced by 1 in at least one
		$\frac{1}{dx} = 3x + 3$	A1	Both terms isw	x term. M0 for $x^2 + 3$
					Ignore any $+c$
		15	A1	Gradient cao	
		$\Rightarrow g = 15$	M1	Correct form for line with <i>their</i> gradient	Alt: Use $y = mx + c$ with <i>their</i> g
		$\Rightarrow (y-9)=15(x-2)$		and (2,9) used. Dep on 1st M mark	and substitute (2,9)
		$\Rightarrow y - 15r - 21$	A1	Three terms only	
		$\Rightarrow y = 15x = 21$			NB No calculus, no marks
			5		

(Quest	ion	Answer	Marks	Guida	nce
4	(i)		$\begin{bmatrix} 2 \\ r^3 \end{bmatrix} = \begin{bmatrix} r^3 \end{bmatrix}^2$	M1	Int	Powers increased by 1 in at least
			$\int (x^2 + 2x + 3) dx = \left \frac{x}{2} + x^2 + 3x \right $	A1	All three terms (ignore c)	one term
						M0 for $x^3 + 2x^2 + 3x$
			$= \left(\frac{8}{3} + 4 + 6\right) - \left(\frac{1}{3} + 1 + 3\right)$ $= 12\frac{2}{3} - 4\frac{1}{3} = 8\frac{1}{3} \text{oe}$	M1 A1	Apply limits and subtract in correct order. soi Dep on 1st M www	Condone lack of brackets. $-8\frac{1}{3}$ is by implication M0.
				4		
	(ii)		Area between $y = x^2 + 2x + 3$, $x = 1$, $x = 2$	B1	Allow sketch with area shaded and $r = 1$ and $r = 2$ clearly seen. Curve in	May write "curve" (but not "line")
			and the x axis.		x = 1 and $x = 2$ clearly seen. Curve in	Denset all and anothing that refere
			(Or "under" or "below" with no mention of <i>x</i>		ist quadrant and right way up.	Do not allow anything that refers
			axis)			to points $(1,0)$, $(2,0)$ and not lines.
				1		

Q	Questi	on	Answer	Marks	Guidance	
5	(i)		3 2 2 3 3 3 3 3 3 3 3 3 3	M1	Diffn twice	Powers decreased by 1 in at least
			$s = \frac{1}{2}t^{2} - 2t + 3 \Rightarrow \left(v = \frac{1}{dt}\right)^{3t-2}$ $\Rightarrow a \text{ or } \frac{dv}{dt} \text{ or } \frac{d^{2}s}{dt} = 3$	B1	For sight of $3t - 2$	one term. M0 for $\frac{3}{2}t - 2$
			$\Rightarrow u \ or \ dt \ dt^2 \ dt^2$	A1	www correctly defined or in words	_
				3		
	(ii)		$v = 3 \times 5 - 2 = 13$	M1	Substitute into <i>their v</i>	Note that use of SUVAT formulae
			$Velocity = 13 (m s^{-1})$	A1	Ignore units	will give different answers.
						Use of $v = u + at$ to give 15 M1 A1
						You may also see 12.2, 15, 13.6,
						$\sqrt{183} \approx 13.5()$
				2		

6993				June 20 June 10		
()uesti	on	Answer	Marks	Guida	nce
6	(i)		(n-1)+n+(n+1)=99 or $3n=99$	B1	Must be seen isw	
			$\Rightarrow n = 33$	B1	Isw 32,33,34 unidentified is B0 (n) = 33 without the eqn is B1	
	(;;)		(n-1)(n+1) + 5n - 202	2 P1		
	(11)		(n-1)(n+1)+3n = 203 $\Rightarrow n^2 + 5n - 204 (= 0)$	B1 B1	Correct 3 term quadratic either as expression or equation implies first B1	e.g. $n^2 + 5n = 204$
			$\Rightarrow (n+17)(n-12) = 0$	M1	To give $(n\pm 12)(n\pm 17)$ soi	Or correct sub from correct quadratic in correct formula Or sight of 6.25 (soi) in completing the square to give
			$\Rightarrow n = 12$	A1	n = -17 must be rejected (by ignoring it is acceptable) isw	$(n \pm 2.5)^2 = 204 + 6.25$ If no equation seen then $n = 12$ is M1 A1, $n = 12$ and -17 is M1 A0
				4		For last two marks: If trial on correct equation gives $n = 12$ then M1 A1

MWWW. MYNATHSCIOUD.COM

	Question	Answer	Marks	Guidance		
7	(i)	$\Rightarrow x+7=3+5x-x^2$	M1	Substitute, eliminating <i>x</i> or <i>y</i> .		
		$\Rightarrow x^2 - 4x + 4 = 0$ oe	A1	3 term quadratic.	Or $y^2 - 18y + 81 = 0$	
		$\Rightarrow x = 2,$	A1	x(or $y)$		
		y = 9	A1	Substitute and find <i>y</i> (or <i>x</i>).		
			4			
	(ii)	Line is tangent to curve (at (2, 9))	B1	Allow "touches".	Or a sketch with any parabola	
					touched by any line	
			1			

	Question		Answer	Marks	Guidance		
8	(i)		$f(-3) = (-3)^3 - 3a + 6 = 0$	M1	Sub -3 and equating to 0.	Or equivalent by long division and	
			(1) (1) (1)		Allow $27 - 3a + 6 = 0$	equating remainder to 0.	
			\Rightarrow 3 <i>a</i> = -21			Or Use $(x+3)(x^2 + px + q) = f(x)$	
			$\Rightarrow a = -7$	A1		and equate coefficients	
				2		1	
	(ii)		$x^2 - 3x + 2$ or $x^2 + x - 6$ or $x^2 + 2x - 3$	B1	Quadratic	Alternative method by factor	
			(r+3)(r-2)(r-1)	B1	$(x\pm 2)$	theorem	
		(x+3)(x-2)(x-1)		B1	$(x\pm 1)$	Any trial except $f(-3)$ B1	
						Obtain $f(1) = 0 B1$	
			x = 1, 2, -3	B1	Ans only B4	Obtain $f(2) = 0 B1$	
						Ans B1	
					NB. Quadratic can be recovered even if		
					cubic is wrong.		
				4			

Jı	un	е	20
----	----	---	----

69	93			Mar	rk Scheme	June 26 Mainsciou
(Quest	ion	Answer	Marks	Gui	dance
9	(i)		$(x-4)^2$	B1	Sight of $(x \pm 4)^2$	
			$(y+1)^2$	B 1	Sight of $(y \pm 1)^2$	
			36	B1	Sight of –36 on lhs or 36 on rhs	
			$\Rightarrow (x-4)^2 + (y+1)^2 = 6^2$	B1	Allow 36. isw	
				4		
	(ii)		Distance from <i>their</i> centre to (8, 3)	M1	By pythagoras	Or sub into either form of the
			$=\sqrt{\left(8-4\right)^{2}+\left(3+1\right)^{2}}=\sqrt{16+16}=\sqrt{32}$			circle.
			and $\sqrt{32} < 6$ or $32 < 36$ so inside	A1	Reason must be given	< 0 (or < 36) therefore inside
			NB. Their centre is either stated or assumed			
			to be their $(4, -1)$ in (i)			
				2		

6993		Mark Scheme June 20				
Q	uestio	n Answer	Marks	Guida	nce	· CO2
10	(i)	$\cos \theta = \frac{10^2 + 8^2 - 7^2}{2 \times 8 \times 10}$ $= 0.71875$ $\Rightarrow \theta = 44^\circ \text{ or } 44.0^\circ \text{ or } 44.1^\circ$	M1 A1 A1 3	Correct substitution into correct formula to give correct angle. Accept 3sf Soi by answer	Could be done in 2 stages	m
	(ii)	$7^{2} = x^{2} + 8^{2} - 2 \times x \times 8 \times \cos 30$ = $x^{2} + 64 - 13.86x$ $\Rightarrow x^{2} - 13.86x + 15 = 0$ x = 12.7 cm	M1 A1 M1 A1 4	Correct substitution into correct formula Oe. Accept 13.9 or better Solve <i>their</i> quadratic with correct substitutions into correct formula. Dep on 1st M1		
		Alternatively: Sin rule to find one angle $D = 34.8(5)^\circ$, $C = 115.1(5)^\circ$ Find other angle and use sin rule or cosine rule	M1 A1 M1 A1	Correct substitution into correct formula Correct substitution into correct formula		

Section B

6993 Section B		June 20		
Question	Answer	Marks	Cuida	nce
11 (i)	Substitute A(1, 4) into both equations Substitute B(4, 7) into both equations	B1 B1	NB. Answer given so working must be seen	Alternatively by solving: Forming the correct three term quadratic by equating B1 e.g. $2x^2 - 10x = -8$ Both pairs of coordinates found B1
(ii)	PQ = $(6x - x^2 - 1) - (x^2 - 4x + 7)$ = $10x - 2x^2 - 8$	2 M1 A1	Allow QP. Allow no brackets	
		2		
(iii)	$\frac{dPQ}{dx} = 10 - 4x$ $= 0 \text{ when } x = 2.5$	M1 A1 M1	In <i>their</i> quadratic PQ at least one power decreased by 1. Allow $x = 2.5$ from diffn of QP and PQ/2 and QP/2 Substitute <i>their</i> x into <i>their</i> quadratic.	NB Non calculus methods get M0 Functions can be diffn separately and equated for marks
	\Rightarrow PQ = 4.5	A1 4	Cao www (NB only from $10 - 4x$)	the –ve sign from use of QP
(iv)	$A = \int_{1}^{4} (10x - 2x^{2} - 8) dx$ $= \left[5x^{2} - 2\frac{x^{3}}{3} - 8x \right]_{1}^{4}$ $= 5\frac{1}{3} - \left(-3\frac{2}{3} \right) = 9$	M1 A1 M1 A1	 Int of <i>their</i> PQ; at least one power increased by 1. Correct integrand. From correct PQ only. Ignore <i>c</i> and limits. Apply limits and subtract in correct order. soi Dep on 1st M (need not be correct integrand) 	Alternatively: Finding the area under each curve Integrate each function M1 Correct integrands A1 Apply limits and subtract in correct order and then subtract answers in correct order M1 Ans $21 - 12 = 9$ A1 www
		4	WWW	

6993			Mark	Mark Scheme June 20 Markscheme				
C	Juesti	ion	Answer	Marks	Guida	nce		
12	(a)	(i)	$\binom{10}{4} \binom{3}{4}^{4} \binom{1}{4}^{6} = 210 \binom{3}{4}^{4} \binom{1}{4}^{6}$	M1 A1	$0.75^n \times 0.25^{10-n}$ seen, $n \neq 0$ or 10 Coefficient evaluated soi by answer	Answers throughout to 3sf or better. Allow % probabilities NB 0.75 and 0.25		
			= 0.0162	A1 A1	Powers soi by answer SC. Use of $1/3$, $2/3$ in correct order	interchanged is max $2/4$ (gives ans = 0.146)		
				4	gives 0.0569 B2			
	(a)	(ii)	P(0 tulip bulbs) = $\left(\frac{3}{4}\right)^{10}$ (= 0.0563)	B1	For $\left(\frac{3}{4}\right)^{10}$ seen (possibly amongst other terms)	Alternatively: Add 10 terms M1 Correct powers and		
			P(at least 1 tulip bulb) = $1 - \left(\frac{3}{4}\right) = 1 - 0.0563$ = 0.944	M1 A1	For $1 - p^{10}$ used. <i>p</i> can also be $\frac{1}{4}$,	Ans A1		
				3				
	(b)		P(3 tulips in 20) = $\binom{20}{3} \left(\frac{3}{4}\right)^{17} \left(\frac{1}{4}\right)^3 = 1140 \left(\frac{3}{4}\right)^{17} \left(\frac{1}{4}\right)^3$	B1 M1 A1	Sight of 20 anywhere.soi $0.75^n \times 0.25^{20-n}$ seen, $n \neq 0$ or 20 Coefficient evaluated soi by answer			
			= 0.134	A1 A1 5	Powers soi by answer			
			Alternatively: 4 terms or 2 terms 0 in one and 3 in the other + 1 in one and 2 in the other $0.0141 (\times 2 = 0.0282)$ $0.0529 (\times 2 = 0.1057)$ 0.134	B1 M1 A1 A1 A1	Sight of 0,3 and 1,2 One of these pairs multiplied, each term of the form $0.75^n \times 0.25^{10-n}$ rounds to 0.014 soi rounds to 0.053 soi	So e.g. 0.067 from 2 terms is 4/5		

J	u	n	е	2	6
---	---	---	---	---	---

6993 Mark Scheme June 20						
Question	Answer	Marks	Guida	ince		
13 (i)	$OA = 0.5$ Pythagoras $(OV^{2}) = 2.4^{2} - their OA^{2}$ $\Rightarrow OV = 2.35 \text{ m}$	B1 M1 A1 3	Or any line from centre to corner of base Do not accept $\sqrt{5.51}$ for final answer. Accept better than 3sf			
(ii)	$\cos^{-1} \frac{their OA}{2.4}$ $= 78.(0)^{\circ}$	3 M1 A1 2	OR $\sin^{-1} \frac{their \text{ OV}}{2.4} = 78.0^{\circ}$ OR $\tan^{-1} \frac{their \text{ OV}}{their \text{ OA}} = 78.0^{\circ}$ Accept 77.9° – 78.3°			
(iii)	Angle is VMO where M is the midpoint of AB. $OM^2 = their OA^2 - 0.25^2$ $\Rightarrow OM = 0.433$ or VM = 2.39 oe Angle VMO = $tan^{-1} \frac{their OV}{their OM} = 79.5^{\circ}$	M1 A1 M1 A1 4	OM or VM Using triangle VMO Accept 79.5° – 79.6°			
(iv)	$\frac{\frac{1}{their \text{ OV}} \text{ up}}{\frac{their \text{ OV} - 1}{their \text{ OV}} = \frac{1.35}{2.35} \left(= \frac{27}{47} = 0.575 \right)}$	M1 A1	Attempt by correct ratio Ratio using slant edges $\frac{2.04 - 1.02}{2.4}$	NB. 1.4/2.4 is incorrect and gives1.75 so M0Alternatively: Use of trigonometryin truncated hexagon (ht 1.35) M1gives length of base 0.287 A1 $\times 6 = 1.72$ A1		
	×3=1.72	A1 3		Beware lots of alternatives!		

993	Mark Scheme June 20				
Question	Answer	Marks	Guidar	nce	
4 (i)	x is the number of bottles of X (produced),y is the number of bottles of Y (produced).(The constraint) models the quantity of A	B1 B1 2	Both		
(ii)	$2x + 5y \le 90$	B1	Do not accept <		
(iii)		B1 B1 B1	One line (0, 28) to (21,0) Other line (0,18) to (30,6) Shading ft for two lines with negative gradients and which intersect in 1st quadrant.	Allow up to one small square out at each edge of grid.	
(iv)	(12, 12) or 12 (of each)	B2 2	Give B1 for attempt to find by drawing line $y = x$ or testing (n,n) or an answer of 24.	Line $y = x$ can be seen on previous graph	
(v)	Maximum is 24 (10, 14), (11, 13), (12, 12)	B1 B3 4	B1 for each. If all 3 given then – 1 for each extra one.(Ignore same point given twice)	Condone for e.g. 10X + 14Y	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Monday 6 June 2016 – Afternoon

FSMQ ADVANCED LEVEL

6993/01 Additional Mathematics

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

Printed Answer Book 6993/01

Other materials required:

Scientific or graphical calculator

Duration: 2 hours

www.mymathscloud.com

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer **Book**. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given correct to three significant figures where appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **100**.
- The Printed Answer Book consists of **20** pages. The Question Paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Formulae Sheet: 6993 Additional Mathematics

In any triangle ABC

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

Binomial expansion

When *n* is a positive integer

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

where

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Section A

3

Answer all the questions.

Solve the inequality 1-2(x-3) > 4x.

1

2	The gradient function of a curve is given by $\frac{dy}{dx} = 3x^2 - 4x + 2$.	
	Find the equation of the curve, given that it passes through the point $(1, 3)$.	[4]
3	Find all the values of x in the range $0^{\circ} < x < 360^{\circ}$ that satisfy $3\sin x = 4\cos x$.	[4]
4	You are given that $f(x) = x^3 - x^2 + x - 6$.	
	Show that	
	(i) $(x-2)$ is a factor of $f(x)$,	[1]
	(ii) the equation $f(x) = 0$ has only one real root.	[4]
5	John draws a triangle ABC with sides $AB = 12 \text{ cm}$, $BC = 16 \text{ cm}$ and $AC = 20 \text{ cm}$. However, he can measure the sides to the nearest centimetre.	n only
	(i) State the smallest possible length of AB in John's drawing.	[1]
	(ii) Hence calculate the largest possible value of the angle B in John's drawing.	[3]
6	Two cars are initially at rest facing in the same direction on a straight road. Car A is 100 m ahead of The two cars start from rest at the same moment. Car A moves with constant acceleration of $1.5 \mathrm{ms^{-2}}$ and car B moves with constant acceleration of $2 \mathrm{ms^{-2}}$	car B. $m s^{-2}$.
	(i) the distance that car B travels before it overtakes car A,	[4]

(ii) the speed of car B at the moment when it overtakes car A. [2]

www.mymathscloud.com

[3]

www.mymathscloud.com

[3]

- 4
- 7 An extension to the roof of a house is shown in the diagram below.

The ridge, CD, and the lines AB and PQ are horizontal. PQ is perpendicular to CD. M is the midpoint of AB. The line PM is vertical.

APB is an isosceles triangle with height 2 metres and base length 3 metres. Angle PQM is 45°.

Find

8

9

(i)	the length of PQ,	[1]				
(ii)	the angle PBQ.	[4]				
(i)	Write down the binomial expansion of $(1 + \delta)^3$.	[2]				
(ii)	Hence explain why, if δ is small, $(1 + \delta)^3 \approx 1 + 3\delta$. [\approx means 'is approximately equal to']	[1]				
You	are given that the equation $x^3 - 0.9x - 0.206 = 0$ has a root very close to $x = 1$.					
(iii)	Substitute $x = 1 + \delta$ into the equation and use the approximation in part (ii) to find an estimate of root, correct to 3 significant figures. Show all your working.	this [4]				
A curve has equation $y = x^3 - 3x^2 - 3x + 4$. Points P and Q lie on the curve. The coordinates of P are $(3, -5)$.						

(i) Find the equation of the tangent to the curve at P. [4]

The tangent to the curve at Q is parallel to the tangent to the curve at P.

(ii) Find the coordinates of Q.

www.mymainscloud.com (i) On the axes given in the Printed Answer Book, indicate the region for which the following inequality 10 hold. You should shade the region that is **not** satisfied by the inequalities. $4x + 3v \leq 30$

$4x + 5y \leq 50$ $y \geq 2r$	
$\begin{array}{l} y \geqslant 2x \\ x \geqslant 1 \end{array}$	[5]
Find the maximum value of $7x + 4y$ subject to these conditions.	[2]

(ii)

Section **B**

www.mymathscloud.com A railway track runs due east-west and is crossed at O by a road running due south-north, as shown below. 11 The crossing has no barriers.

Initially a train is at point B, 400 m from O, and a car is at point A, 100 m from O. The train is travelling at a constant speed of 25 m s^{-1} towards O and the car is travelling at a constant speed of 20 m s^{-1} towards O.

At time t seconds the train is at point Q and the car is at point P.

(i)	Find expressions for the distances OP and OQ as functions of <i>t</i> .	[2]
-----	---	-----

- The distance between the car and the train at time ts is xm. Find a formula for x^2 in terms of t. Give (ii) your formula in the form $x^2 = a + bt + ct^2$ where a, b and c are to be determined. [3]
- Differentiate this formula with respect to t and find the time at which x^2 is a minimum. Hence find the (iii) shortest distance between the car and the train. [6]
- (iv) Show that the car passes point O before the train. [1]
- 12 The line L₁ has equation 3x - y = 1 and the point P has coordinates (8, 3).

(i)	Find the equation of the line L_2 which passes through P and is perpendicular to line L_1 .	[3]
(ii)	Find the coordinates of the point Q where L_1 and L_2 intersect.	[3]
(iii)	Find the length PQ.	[2]

- (iv) Write down the equation of the circle that has centre P and line L_1 as a tangent. [1]
- Find the equation of the other line that is a tangent to the circle and is parallel to line L_1 . [3] (v)

- www.mymathscloud.com The cost of a packet of buns in a local supermarket is x pence and the cost of a loaf of bread 13 x + 75 pence.
 - Write an expression for the number of packets of buns that can be bought for £5.40 and an expression (i) for the number of loaves that can be bought for £5.40. [2]

The number of packets of buns that can be bought for £5.40 is 5 more than the number of loaves that can be bought for £5.40.

- (ii) Using this information and your answer to part (i), derive an equation in x and show that it simplifies to $x^2 + 75x - 8100 = 0.$ [5]
- (iii) Solve this equation to find the cost of a packet of buns and the cost of a loaf of bread. [5]

Question 14 is printed overleaf

segment RQ is A₂.

END OF QUESTION PAPER

The area between the curve and the line segment PR is A1 and the area between the curve and the line

[6]

OCR Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

FSMQ

Additional Mathematics

Unit 6993: Additional Mathematics

Free Standing Mathematics Qualification

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016
Annotations and abbreviations

6993	Mark Scheme June June
Annotations and abbrev	viations
Annotation	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured)
	and on each page of an additional object where there is no candidate response.
√and ×	
BOD	Benefit of doubt
FT	Follow through
lsw	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
AG	Answer given
M1 dep	Method mark dependent on a previous method mark(s)
сао	Correct answer only
00	Or equivalent
soi	Seen or implied
WWW	Without wrong working

Subject-specific Marking Instructions for Additional Mathematics

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 can never be awarded.

В

Mark for a correct result or statement independent of Method marks.

Mark Scheme

- June Vs Coud com When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says d otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. е Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- Rules for replaced work g

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Section A

6993 Section A		Mark Scher	ne	Jun	WWW. TRYMathscioud.com
Question	Answer	Marks	Gi	lidance	
1	1-2(x-3) > 4x $\Rightarrow a > bx \text{or} -a < -bx$ Either $a = 7 \text{ or } b = 6$ in either of above $\Rightarrow x < \frac{7}{6} \text{ (or 1.17 or 1.16)}$	M1 A1 A1	Expand and collect soi www isw	Do not allow = anywhere even if final answer correct	
		3			

(Questi	on	Answer	Marks	Guidanc	e
2			$\frac{dy}{dx} = 3x^2 - 4x + 2$ $\Rightarrow y = x^3 - 2x^2 + 2x (+c) oe$ Satisfied by (1, 3) $\Rightarrow 3 = 1 - 2 + 2 + c$ $(\Rightarrow c = 2)$	M1 A1 M1dep	Int: At least 1 power increased by 1: Beware mult by x Three terms ignoring c Substitution	
			$\Rightarrow y = x^3 - 2x^2 + 2x + 2$	A1	Complete simplified equation	
				4		

6993	iestion	Answer	Mark Sch	eme	June 26 June	MI ANSINS SINSCIOL
3		$3 \sin x = 4 \cos x \Rightarrow \tan x = \frac{4}{3}$ $\Rightarrow x = 53.1(3)$ and $x = 180 + 53.13 = 233(.13)$ Alternative: Square, use Pythagoras M1 $\Rightarrow \cos x = \pm 0.6 \text{ or } \sin x = \pm 0.8 \text{ A1(must include } \pm)$ Gives 53.1 A1 Or 233 B1 only if no extra values in range	M1 A1 A1 B1	For tanx For $\frac{4}{3}$ One angle (53 not acceptable) ft Other angle B0 any extra values in range, ignore any outside range	Allow $\tan^{-1}\left(\frac{4}{3}\right) = k$ or $\tan^{-1}\left(\frac{3}{4}\right) = k$	SC.COM
			4			

	Questi	on	Answer	Marks	Guidance		
4	(i)		8 - 4 + 2 - 6 = 0	B1	must be seen	i.e. powers evaluated	
			Alternative:				
			Demonstration that $f(x) = (x-2)(x^2 + x + 3)$				
				1			
	(ii)		f (x) = $(x-2)(x^2 + x + 3)$ D = $b^2 - 4$ ac = $1 - 4 \times 3$ (= -11) (< 0) or $(x+0.5)^2 + 2.75 \neq 0$ so only one root or no other roots	M1 A1 M1 A1	Factorise: Any 2 correct terms of 3 term quadratic seen. For long division: first two terms For quad factor Numerical evidence must be seen on correct quadratic. Last statement must be seen. Condone reference to $(x - 2)$ being the root.	If quad factor is found in (i) then give credit in (ii) if seen in (ii) e.g. √-11 won't work	
				4			

69	93			Mark Sche	eme	June 26 Mainscio	AS AS
	Quest	ion	Answer	Marks	G	uidance	<u>у</u> .Сс
5	(i)		11.5	B1	One number only seen or AB clearly identified		OM
				1			
	(ii)		Use 11.5, 15.5 and 20.5 $\cos B = \frac{11.5^2 + 15.5^2 - 20.5^2}{2 \times 11.5 \times 15.5} (= -0.1339)$ $\Rightarrow B = 97.7^0$	B1 M1 A1	Correct use of cosine rule on correct angle using values rounding to given values Answers rounding to 97.7	i.e. range [11.5,12.5]. [15.5,16.5],[19.5,20.5] Values must be consistent.	
				3			

(Questi	ion	Answer	Marks		Guidance
6	(i)		(Distance for A:) $\frac{3}{4}t^2$ (Distance for B:) t^2	B1 B1	soi; ignore 100 soi; ignore 100	
			$\Rightarrow s = \frac{3}{4}(s \pm 100) \text{ or } s \pm 100 = \frac{3}{4} \text{ s or } \frac{3}{4}t^2 \pm 100 = t^2$ $\Rightarrow s = 300 \text{ or } 400 \text{ or } t = 20$ $\Rightarrow \text{ B travels 400 m}$	M1 A1	Equating distances leading to one of the 6 forms www	SC4 www for trial and error giving correct answer.
				4		
	(ii)		Using $v^2 = u^2 + 2as$ $\Rightarrow v^2 = 2.2.400 = 1600$ $\Rightarrow v = 40 \text{ m s}^{-1}$	M1	And using $a = 2$ and <i>their</i> s from (i)	Or complete and equivalent method. Allow missing u
			$\Rightarrow v = 40 \text{ m s}$	AI 2	www	

699	93			Mark Sche	eme	June 26	MA ASHS
	Questi	ion	Answer	Marks	Gu	lidance	49.C
7	(i)		2	B1			-OM
				1			
	(ii)		For PB: PB = $\sqrt{2^2 + 1.5^2} = 2.5$	M1 A1		If PB is found in (i) then give credit in (ii) only if seen in (ii).	
			$\Rightarrow \tan PBQ = \frac{2}{2.5} = 0.8$	M1	Using <i>their</i> PQ and PB		
			\Rightarrow Angle PBQ = 38.7°	A1	Alternatively for the last two marks: Attempt to find QB and use it with sin, cos or sine rule or cosine rule	n.b. $QB = \sqrt{10.25}$	
				4			

(Questi	on	Answer	Marks	Gu	iidance
8	(i)		$(1+\delta)^3 = 1^3 + 3 \cdot 1^2 \delta + 3 \cdot 1\delta^2 + \delta^3$	B1	Unsimplified expansion soi	Can be by expansion
			$=1+3\delta+3\delta^2+\delta^3$	B1		
				2		
	(ii)		Because, if δ is small, then (terms in) (3) δ^2 and	B1	"ignored" or similar must be	e.g. neglected, eliminated
			δ^3 are very small and can be ignored		seen	
				1		
	(iii)		$(1+\delta)^3 - 0.9(1+\delta) - 0.206 \ (=0)$	M1	Sub	
			$\Rightarrow 1+3\delta - 0.9(1+\delta) - 0.206 (=0)$	M1dep	Using result of (ii)	
			$\Rightarrow 2.1\delta = 0.106$			
			$\Rightarrow \delta = 0.05$	A1		
			$\Rightarrow x = 1.05$	Al	3st or better	
				4		

June	26
------	----

699	3			Mark Scl	heme	June 20	Mainscion.
(Questi	ion	Answer	Marks	(Guidance	*Q.C.
9	(i)		$\frac{dy}{dx} = 3x^2 - 6x - 3$ When $x = 3$, $\frac{dy}{dx} = 6$	M1 A1	Diffn. At least one power reduced by 1. Beware division by x	Ignore + <i>c</i>	On
			\Rightarrow Equation of tangent is	M1dep	Any valid form using <i>their</i>		
			y + 5 = 6(x - 3) oe	-	gradient and $(3, -5)$.		
			$\Rightarrow y = 6x - 23$ oe	A1	oe only 3 terms		
				4			
	(ii)		$\frac{dy}{dx} = 3x^2 - 6x - 3 = 6$ $\Rightarrow x^2 - 2x - 3 = 0$	M1	Equating <i>their</i> gradient fn and <i>their</i> 6		
			$\Rightarrow (x-3)(x+1) = 0$	A1	Correct factorisation www		
			\Rightarrow Q is where $x = -1$, $y = 3$. 1		Ignore $(3, -5)$ as a possible answer.	
				AI	cao www	SC3 if $\frac{dy}{dx} = x^2 - 2x - 1 \Rightarrow g = 2$ in (i) and Q is correct.	
				3			-

	Mark S	cheme		June 20 Martinsciou
uestio	Answer	Marks	Gui	dance
(i)		B1 B1 B1 B1 B1	One line 2nd line 3^{rd} line Shading $x \le 1$ Other shading. Allow ft if gradients of lines are the same sign as the correct lines.	Allow one small square tolerance on each axis
		5		
(ii)	Max value at intersection which is (3, 6) =45	B1 B1 2	soi	e.g. 45 gets 2
	uestion (i) (ii)	Mark S uestion Answer (i) 1^{0} $1^$	Mark Scheme uestion Answer Marks (i) 1	Mark Scheme uestion Answer Marks Gui (i) a_{1}

Section B

699: Sect	3 ion B			Mark Scl	heme	June 20 Mainscioud
(Questi	on	Answer	Marks	Guidan	ce
11	(i)		(OP =) 100 - 20t	B1	isw	Ignore labels
			(OQ =) 400 - 25t	B1	isw	
				2		
	(11)		(2) $(122 - 22)^2$ $(122 - 22)^2$	MI	Use of Pythagoras on <i>their</i> expressions.	Condone use of
			$(x^2) = (100 - 20t)^2 + (400 - 25t)^2$	A1	Soi ignore lack of x^2	20i - 100 etc for full marks
			$x^2 = 170000 - 24000t + 1025t^2$	A1	Final answer must include x^2	
				3		
	(iii)		$\frac{d}{dt}(x^2) = -24000 + 2050t$	M1	Diffn of <i>their</i> fn : reduction of power in at least one term	Ignore incorrect constant from
				A1	Correct numerical expression isw	Ignore notation on lhs SC 1 for $h + 2ct$
				M1dep	Set $= 0$ and attempt to solve	
			when $t = \frac{24000}{2050} \left(=\frac{480}{41}\right) = (11.7)$ oe	A1	Allow correct answer even if premature division in (i)	
			Then $x^2 = 29512$	M1dep	Substitute <i>their t</i> (providing $t > 0$). Dep on both M	
			$\Rightarrow x = 172 (\mathrm{m})$	A1		
				6		
	(iv)		Car takes 5 secs to reach O Train takes 16 secs	B1	Numerical evidence for both required	Accept other valid explanations
				1		

699	3		Μ	lark Scher	ne	June 26 Marins Clor
(Questi	ion	Answer	Marks	Guid	ance
12	(i)		$x + 3y = k \text{ or } y = -\frac{1}{3}x + c \text{ or } \frac{y - b}{x - a} = -\frac{1}{3}$ substitute (8, 3) gives $x + 3y = 17$ oe	M1 M1dep A1	3 term equation isw	$k = 17 \text{ or } c = \frac{17}{3}$ 1 17
				3		$y = -\frac{1}{3}x + \frac{1}{3}$
	(ii)		Solve <i>their</i> L_2 with $y = 3x - 1$ simultaneously: x = 2, y = 5	M1 A1 A1 2	Must lead to a value for <i>x</i> or <i>y</i>	SC3 Checking points and finding that (2, 5) lies on both
	(iii)		$d^{2} = (8-2)^{2} + (3-5)^{2} (=40)$ $\Rightarrow d = \sqrt{40} (=2\sqrt{10} = 6.32)$	M1 A1	Application of Pythagoras	
			$\Rightarrow u = \sqrt{+0} \left(-2\sqrt{10} - 0.52\right)$			
	(iv)		$(x-8)^{2} + (y-3)^{2} = 40$	2 B1	FT from (iii) Allow 6.32^2 oe	
	(v)		The point is on the other end of the diameter: (ϵ)	1		Alternatively:
			$ \begin{array}{c} (2,5) \text{ to } (8,3) \text{ is } \begin{pmatrix} 0 \\ -2 \end{pmatrix} \\ \Rightarrow (14,1) \end{array} $	M1	Using (8, 3) and <i>their</i> Q from (ii).	$\begin{vmatrix} \frac{2+x}{2} = 8, & \frac{3+y}{2} = 3 & M1 \\ \Rightarrow x = 14, & y = 1 & A1 \end{vmatrix}$
			3x - y = c satisfied by (14, 1) $\Rightarrow 3x - y = 41 \mathbf{oe}$	A1 A1	Only 3 terms	
	1			3		

June	20
------	----

6993	3			Μ	ark Scheme	June 26 Mathsclo
(Juesti	ion	Answer	Marks	Guidance	
13	(i)		$\frac{540}{x}, \frac{540}{x+75}$ oe	B1 B1	Condone $\frac{5.4}{x}, \frac{5.40}{x+0.75}$ or $\frac{5.40}{x+75}$	Ignore any labels. Allow $n \leq \frac{540}{x}$ etc
				2		
	(ii)		$\Rightarrow \frac{540}{x} = \frac{540}{x+75} + 5 \text{ oe}$	M1 A1 M1	For forming 3 term eqn using <i>their</i> terms from (i) Condone -5 Correct eqn Clear both fractions. Eqn must have 3 terms with x and $x \pm 75$ involved in denominator for 2 terms	May start again
			$\Rightarrow (540 \times 75 = 5x(x+75))$ $\Rightarrow x^2 + 75x - 8100 = 0$	A1	AG. At least 1 intermediate step must be seen	Any wrong algebra gets final A0
				5		
	(iii)		$x^2 + 75x - 8100 = 0$	M1	Solving given quadratic by factorisation that would lead to 2 terms correct when expanded soi Or correct formula soi	
			$\Rightarrow (x-60)(x+135) = 0$	A1	Correct factorisation or correct substitution	Ignore –135
			$\Rightarrow x = 60$ $\Rightarrow x + 75(=135) \text{ or } 60 + 75$ Buns 60p, loaf of bread 135p oe	A1 A1 A1 5	soi by final answer cao www - units must be given	Correct answer only full marks

6993	Mark Scheme			June 20
Question	Answer	Marks	Guidan	ce
14 (i)	$\Rightarrow 7 = (-3)^3 + (-3)^2 a - 3b + 1 \text{oe}$ and $3 = 1 + a + b + 1 \text{oe}$ $\Rightarrow (9a - 3b = 33 \text{ and } a + b = 1)$	B1 B1 M1	1st equation 2nd equation Solve <i>their</i> eqns leading to either <i>a</i> or <i>b</i>	Need not be simplified for either Need to see at least one intermediate
	$\Rightarrow a = 3, b = -2$	A1	Both AG	step
		4		
(ii)	Midpoint is $(-1, 5)$ Show $(-1, 5)$ lies on curve.	B1 B1	Must see $-1 + 3 + 2 + 1 = 5$	i.e. powers must be evaluated
		2		
	$A_{1} = \pm (\text{Area under curve} - \text{ area under line})$ or $A_{2} = \pm (\text{Area under line} - \text{ area under curve})$ Area under curve $= \int (x^{3} + 3x^{2} - 2x + 1) dx = \frac{x^{4}}{4} + x^{3} - x^{2} + x(+c)$ $A_{1} = \left(\left(\frac{1}{4} - 1 - 1 - 1 \right) - \left(\frac{81}{4} - 27 - 9 - 3 \right) \right) - 12$ $= \left(-\frac{11}{4}\frac{75}{4} \right) - 12 = 16 - 12 = 4$ $A_{2} = 8 - \left(\left(\frac{1}{4} + 1 - 1 + 1 \right) - \left(\frac{1}{4} - 1 - 1 - 1 \right) \right) = 8 - 4 = 4$	B1 M1 A1 M1dep A1 A1	For sight of one attempt to find a difference of areas For integration, ignore limits Integration correct Correct limits for one curve integral (For A_1 , -3 to -1 and for A_2 , -1 to 1) For A_1 www	At least 3 powers increased by 1. Watch for multiplication by <i>x</i> Could be wrong way round but must be subtracted
			FOF A ₂ www	should be explained for credit of A1
		0		

6993	Mark Scheme	June 20		
Question	Answer	Marks	Guidance	
	Alternative 1: if subtraction is before integration.	B1	For subtracting <i>their</i> $y = 4 - $	Could be subtracted
	$(A_1) = \int (x^3 + 3x^2 - 2x + 1 - (4 - x)) dx = \frac{x^4}{4} + x^3 - \frac{x^2}{2} - 3x(+c)$	M1	<i>x</i> from curve For either integration, ignore limits	in either order
	$=\left(\left(\frac{7}{4}\right) - \left(-\frac{9}{4}\right)\right) = 4$	A1 M1dep	Either integration correct Correct limits for one curve integral	Could be wrong way round but must be
	$ (A_2) = \int ((4-x) - (x^3 + 3x^2 - 2x + 1)) dx = -\frac{x^3}{4} - x^3 + \frac{x^2}{2} + 3x(+c) $	41	(For A_1 , -3 to -1 and for A_2 , -1 to 1)	subtracted.
	$=\left(\left(\frac{9}{4}\right) - \left(-\frac{7}{4}\right)\right) = 4$	AI A1	For A_1 www For A_2 www	h.b. an answer of -4 should be explained for credit of A1
	Alternative 2	B1	For subtracting <i>their</i> $y = 4 - x$ from curve	
	$y = (x^{3} + 3x^{2} - 2x + 1) - (4 - x) = x^{3} + 3x^{2} - x - 3$ $y = (x + 1)^{3} - 4(x + 1)$	M1	Writing as a function of $(r+1)$	
	This is an odd function relative to $x = -1$. The function therefore has 180° rotational symmetry about (-1, 0)	M1 A1 A1	(x + 1) Understanding of odd function Rotational symmetry Conclusion	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

