The equation $x^{2}-2 x+10=0$ has roots α and β.
Find a quadratic equation with roots α^{3} and β^{3}.

Substitution Method

An equation with the required roots is $\left(u^{\frac{1}{3}}\right)^{2}-2 u^{\frac{1}{3}}+10=0$

$$
\begin{gathered}
u^{\frac{1}{3}}\left(u^{\frac{1}{3}}-2\right)=-10 \\
u\left(u-6 u^{\frac{2}{3}}+12 u^{\frac{1}{3}}-8\right)=-1000 \\
u\left(u-6\left(u^{\frac{2}{3}}-2 u^{\frac{1}{3}}+10\right)+52\right)=-1000 \\
u^{2}+52 u+1000=0
\end{gathered}
$$

Sums and Products of Roots Method

$$
\begin{gathered}
\alpha+\beta=2 \quad \alpha \beta=10 \\
(\alpha+\beta)^{3}=\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3}=8 \\
\Rightarrow \alpha^{3}+\beta^{3}=8-3 \alpha \beta(\alpha+\beta)=8-3 \times 10 \times 2=-52 \\
\alpha^{3} \beta^{3}=1000
\end{gathered}
$$

The required equation is $u^{2}+52 u+1000=0$

