11 The shape ABCD below represents a leaf. The curve ABC has equation $y=-x^{2}+8 x-9$. The curve ADC has equation $y=x^{2}-6 x+11$.

(i) Find algebraically the coordinates of A and C , the points where the curves intersect.
(ii) Find the area of the leaf.

9 A car accelerates from rest. At time t seconds, its acceleration is given by $a=4-0.2 t \mathrm{~m} \mathrm{~s}^{-2}$ until $t=20$.
(i) Find the velocity after 5 seconds.
(ii) What is happening to the velocity at $t=20$?
(iii) Find the distance travelled in the first 20 seconds.

8 A train moves between two stations, taking 5 minutes for the journey.
The velocity of the train may be modelled by the equation $v=60\left(t^{4}-10 t^{3}+25 t^{2}\right)$ where v is measured in metres per minute and t is measured in minutes.

Calculate the distance between the two stations.

11 The shaded region in the diagram shows a wooden shape
The curve has equation $y=\frac{1}{2} x^{2}$ and the coordinates of A are $(-2,2)$.

The line AB is the normal to the curve at the point A .
(i) Find the equation of the line AB . [5]
(ii) Find the coordinates of the point B where the line AB meets the curve again.
(iii) Find the shaded area.

12 Fig. 12 shows the shape $A O B$ that is to be made from card.
B is the point $(5,0)$ and $O B$ is part of the curve with equation $y=0.3 x^{2}-1.5 x$.
The line $A B$ is the normal to the curve at B.

Fig. 12

(i) Find the equation of the line AB .

The equation of the line AO is $2 y+3 x=0$.
(ii) Find the coordinates of the point A .
(iii) Find the area of the shape AOB .

9 The gradient function of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x+4$.
Find the equation of the curve, given that it passes through the point $(2,2)$.

12 Two cars, A and B, move from rest away from a point O on a straight road starting at the same time.
(a) Car A moves with constant acceleration of $2 \mathrm{~m} \mathrm{~s}^{-2}$.

Express the displacement of car A after time t seconds as a function of t.
(b) Car B moves with acceleration given by $a=\frac{1}{2} t+1$.

Express the displacement of car B after time t seconds as a function of t.
(c) (i) Find the time at which the cars are the same distance from O .
(ii) Find the distance they have travelled at that time.
(d) Draw a sketch graph of the velocity of each car on the axes given.

14 The cross-section of a speed hump is modelled by the region enclosed by the x-axis and the curve

$$
y=\frac{1-(x-1)^{4}}{5}
$$

The graph is shown in Fig. 14.
Units are metres.

Fig. 14
(a) (i) Write down the maximum value of $1-(x-1)^{4}$.
(ii) Hence write down the maximum height of the speed hump.
(b) Show that $y=\frac{1}{5}\left(4 x-6 x^{2}+4 x^{3}-x^{4}\right)$.
(c) Find the area of the cross-section of the speed hump.

8
(i) Show that $\int_{0}^{2}\left(x^{2}+2 x-3\right) \mathrm{d} x=\frac{2}{3}$.

The diagram shows part of the curve $y=x^{2}+2 x-3$.

(ii) Marc claims that the total area between the curve, the x-axis and the lines $x=0$ and $x=2$ is $\frac{2}{3}$.

Explain why he is wrong.
(iii) Calculate the total area between the curve, the x-axis and the lines $x=0$ and $x=2$.

8 A mathematical gardener has a garden which is rectangular in shape measuring 20 metres by 8 metres. He wishes to arrange the garden so that approximately half of it is lawn and the rest flower bed.

He sets up a coordinate system as shown in the diagram below and maps out the graph of the curve $y=8 x-x^{2}$.

Show that the area of the lawn is approximately 53% of the total area.

2 The gradient function of a curve that passes through the point $(1,2)$ is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 x+7
$$

Find the equation of the curve.

3 (i) Find the area enclosed between the curve $y=8 x^{3}$, the x-axis and the line $x=2$.
(ii) Hence, or otherwise, deduce the area between the x-axis, the y-axis, the line $x=2$ and the curve $y=8 x^{3}+5$.

4 (i) Find $\int_{1}^{2}\left(x^{2}+2 x+3\right) \mathrm{d} x$.
(ii) Interpret your answer geometrically.

11 Two curves, S_{1} and S_{2} have equations $y=x^{2}-4 x+7$ and $y=6 x-x^{2}-1$ respectively. The curves meet at A and at B .

Fig. 11
(i) Show that the coordinates of A and B are $(1,4)$ and $(4,7)$ respectively.

Points P and Q lie on S_{2} and S_{1} between A and B . P and Q have the same x coordinate so that PQ is parallel to the y-axis, as shown in Fig. 11.
(ii) Find an expression, in its simplest form, for the length PQ as a function of x.
(iii) Use calculus to find the greatest length of PQ .
(iv) Find the area between the two curves.

7 The gradient function of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=a+b x$. Find the values of a and b and the equation of the curve given that it passes through the points $(0,2),(1,8)$ and $(-1,2)$.

8 A car moves in a straight line. Its velocity in metres per second, t seconds after passing a point A, is given by the equation

$$
v=27-\frac{1}{8} t^{3}
$$

It comes to rest at a point B.
(i) Show that the car is at B when $t=6$.
(ii) Find the distance AB .

13

The shape of the bed of a river is to be modelled mathematically. The diagram represents a crosssection of the river. A and B on the x-axis represent points on opposite banks of the river at water level. (Units are metres.)

The shape of the river bed between A and B is modelled by the equation

$$
y=\frac{3}{16}\left(x^{2}-16\right)
$$

(i) Find the coordinates of A and B and hence state the width of the river represented by the length $A B$.
(ii) Find the depth of the river at its deepest point.
(iii) Find the area of the cross-section of the river.
(iv) The river flows at 20 metres a minute. You should assume that this rate applies to all points of this cross-section.

Find the volume of water that flows through this cross-section per minute.
(v) Give two reasons why this model may not be a good model.

1 Find $\int_{1}^{3}\left(x^{2}+3\right) \mathrm{d} x$.

6 A curve has gradient given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+2$. The curve passes through the point $(3,0)$. Find the equation of the curve.

2 A particle moves in a straight line. Its velocity, $v \mathrm{~m} \mathrm{~s}^{-1}, t$ seconds after passing a point O is given by the equation

$$
\begin{equation*}
v=6+3 t^{2} \tag{4}
\end{equation*}
$$

Find the distance travelled between the times $t=1$ and $t=3$.

8 The figure shows the graphs of $y=4 x-x^{2}$ and $y=x^{2}-4 x+6$.

(i) Use an algebraic method to find the x-coordinates of the points where the curves intersect.
(ii) Calculate the area enclosed by the two curves.

6 A speedboat accelerates from rest so that t seconds after starting its velocity, in $\mathrm{m} \mathrm{s}^{-1}$, is given by the formula $v=0.36 t^{2}-0.024 t^{3}$.
(i) Find the acceleration at time t.
(ii) Find the distance travelled in the first 10 seconds.

11 The side of a fairground slide is in the shaded shape as shown in Fig. 11. Units are metres.

Fig. 11

The curve has equation $y=\lambda x^{2}$.
T has coordinates $(4,2)$. The line BT is a tangent to the curve at T. It meets the x-axis at the point B.
(i) Find the value of λ.
(ii) Find the equation of the tangent BT and hence find the coordinates of the point B .
(iii) Find the area of the shaded portion of the graph.

