OCR Additional Maths Exam Questions - Integration

11 The shape ABCD below represents a leaf.

The curve ABC has equation $y = -x^2 + 8x - 9$.

The curve ADC has equation $y = x^2 - 6x + 11$.

- (i) Find algebraically the coordinates of A and C, the points where the curves intersect. [5]
- (ii) Find the area of the leaf. [7]
- A car accelerates from rest. At time t seconds, its acceleration is given by $a = 4 0.2t \text{ m s}^{-2}$ until t = 20.
 - (i) Find the velocity after 5 seconds. [3]
 - (ii) What is happening to the velocity at t = 20? [1]
 - (iii) Find the distance travelled in the first 20 seconds. [3]
- A train moves between two stations, taking 5 minutes for the journey. The velocity of the train may be modelled by the equation $v = 60(t^4 10t^3 + 25t^2)$ where v is measured in metres per minute and t is measured in minutes.

Calculate the distance between the two stations. [5]

11 The shaded region in the diagram shows a wooden shape.

The curve has equation $y = \frac{1}{2}x^2$ and the coordinates of A are (-2, 2).

The line AB is the normal to the curve at the point A.

- (i) Find the equation of the line AB. [5]
- (ii) Find the coordinates of the point B where the line AB meets the curve again. [3]
- (iii) Find the shaded area. [4]
- 12 Fig. 12 shows the shape AOB that is to be made from card.

B is the point (5, 0) and OB is part of the curve with equation $y = 0.3x^2 - 1.5x$.

The line AB is the normal to the curve at B.

Fig. 12

[4]

(i) Find the equation of the line AB.

(s) 1 ma me equation of the mile 122.	r.,1
The equation of the line AO is $2y + 3x = 0$.	
(ii) Find the coordinates of the point A.	[3]
(iii) Find the area of the shape AOB.	[5]
9 The gradient function of a curve is given by $\frac{dy}{dx} = 3x^2 - 2x + 4$. Find the equation of the curve, given that it passes through the point (2, 2).	[4]
12 Two cars, A and B, move from rest away from a point O on a straight road starting at the (a) Car A moves with constant acceleration of 2 m s ⁻² .	e same time.
Express the displacement of car A after time t seconds as a function of t . (b) Car B moves with acceleration given by $a = \frac{1}{2}t + 1$.	[2]
Express the displacement of car B after time t seconds as a function of t. (c) (i) Find the time at which the cars are the same distance from O.	[4] [2]
(ii) Find the distance they have travelled at that time.	[2]
(d) Draw a sketch graph of the velocity of each car on the axes given.	[2]
14 The cross-section of a speed hump is modelled by the region enclosed by the <i>x</i> -axis and the curve $y = \frac{1 - (x - 1)^4}{5}.$ The graph is shown in Fig. 14. Units are metres.	

Fig. 14

- (a) (i) Write down the maximum value of $1 (x 1)^4$. [1]
 - (ii) Hence write down the maximum height of the speed hump.

[1]

- **(b)** Show that $y = \frac{1}{5}(4x 6x^2 + 4x^3 x^4)$.
- (c) Find the area of the cross-section of the speed hump. [7]

8 (i) Show that
$$\int_0^2 (x^2 + 2x - 3) dx = \frac{2}{3}$$
. [3]

The diagram shows part of the curve $y = x^2 + 2x - 3$.

(ii) Marc claims that the total area between the curve, the x-axis and the lines x = 0 and x = 2 is $\frac{2}{3}$.

Explain why he is wrong. [1]

- (iii) Calculate the total area between the curve, the x-axis and the lines x = 0 and x = 2. [3]
- 8 A mathematical gardener has a garden which is rectangular in shape measuring 20 metres by 8 metres. He wishes to arrange the garden so that approximately half of it is lawn and the rest flower bed.

He sets up a coordinate system as shown in the diagram below and maps out the graph of the curve $y = 8x - x^2$.

Show that the area of the lawn is approximately 53% of the total area.

[6]

2 The gradient function of a curve that passes through the point (1, 2) is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x + 7.$$

Find the equation of the curve.

- 3 (i) Find the area enclosed between the curve $y = 8x^3$, the x-axis and the line x = 2. [3]
 - (ii) Hence, or otherwise, deduce the area between the x-axis, the y-axis, the line x = 2 and the curve $y = 8x^3 + 5$.

4 (i) Find
$$\int_{1}^{2} (x^2 + 2x + 3) dx$$
. [4]

- (ii) Interpret your answer geometrically. [1]
- 11 Two curves, S_1 and S_2 have equations $y = x^2 4x + 7$ and $y = 6x x^2 1$ respectively. The curves meet at A and at B

Fig. 11

(i) Show that the coordinates of A and B are (1, 4) and (4, 7) respectively.

Points P and Q lie on S_2 and S_1 between A and B. P and Q have the same x coordinate so that PQ is parallel to the y-axis, as shown in Fig. 11.

[2]

- (ii) Find an expression, in its simplest form, for the length PQ as a function of x.[2]
- (iii) Use calculus to find the greatest length of PQ. [4]
- (iv) Find the area between the two curves. [4]
- 7 The gradient function of a curve is given by $\frac{dy}{dx} = a + bx$. Find the values of a and b and the equation of the curve given that it passes through the points (0, 2), (1, 8) and (-1, 2). [7]
- A car moves in a straight line. Its velocity in metres per second, t seconds after passing a point A, is given by the equation

$$v = 27 - \frac{1}{8}t^3.$$

It comes to rest at a point B.

- (i) Show that the car is at B when t = 6. [1]
- (ii) Find the distance AB. [5]

The shape of the bed of a river is to be modelled mathematically. The diagram represents a cross-section of the river. A and B on the x-axis represent points on opposite banks of the river at water level. (Units are metres.)

The shape of the river bed between A and B is modelled by the equation

$$y = \frac{3}{16}(x^2 - 16).$$

- (i) Find the coordinates of A and B and hence state the width of the river represented by the length AB.
- (ii) Find the depth of the river at its deepest point. [2]
- (iii) Find the area of the cross-section of the river. [5]
- (iv) The river flows at 20 metres a minute. You should assume that this rate applies to all points of this cross-section.

Find the volume of water that flows through this cross-section per minute. [1]

[2]

(v) Give two reasons why this model may not be a good model.

1 Find
$$\int_{1}^{3} (x^2 + 3) dx$$
. [4]

- 6 A curve has gradient given by $\frac{dy}{dx} = 2x + 2$. The curve passes through the point (3,0). Find the equation of the curve. [5]
- A particle moves in a straight line. Its velocity, $v \text{ m s}^{-1}$, t seconds after passing a point O is given by the equation

$$v = 6 + 3t^2$$
.

Find the distance travelled between the times t = 1 and t = 3. [4]

8 The figure shows the graphs of $y = 4x - x^2$ and $y = x^2 - 4x + 6$.

(i) Use an algebraic method to find the x-coordinates of the points where the curves intersect.

[3]

(ii) Calculate the area enclosed by the two curves.

[4]

- A speedboat accelerates from rest so that t seconds after starting its velocity, in m s⁻¹, is given by the formula $v = 0.36t^2 0.024t^3$.
 - (i) Find the acceleration at time t. [3]
 - (ii) Find the distance travelled in the first 10 seconds.

[4]

11 The side of a fairground slide is in the shaded shape as shown in Fig. 11. Units are metres.

Fig. 11

The curve has equation $y = \lambda x^2$.

T has coordinates (4, 2). The line BT is a tangent to the curve at T. It meets the x-axis at the point B.

- (i) Find the value of λ . [1]
- (ii) Find the equation of the tangent BT and hence find the coordinates of the point B. [6]
- (iii) Find the area of the shaded portion of the graph. [5]