17 Here is a sketch of a curve.

The equation of the curve is $y=x^{2}+a x+b \quad$ where a and b are integers.
The points $(0,-5)$ and $(5,0)$ lie on the curve.
Find the coordinates of the turning point of the curve.

Given the equation of a curve or a line and some coordinates, substitute the given coordinates into the equation.

The point $(0,-5)$ shows that $-5=0^{2}+a \times 0+b$ so $b=-5$
The point $(5,0)$ then gives $0=5^{2}+a \times 5-5$.

$$
\begin{aligned}
& \text { That is } 0=25+5 a-5 \Rightarrow \\
& \qquad \begin{array}{c}
0=20+5 a \Rightarrow \\
-20=5 a \Rightarrow \\
a=-4
\end{array}
\end{aligned}
$$

The equation of the curve is $y=x^{2}-4 x-5$
This can be factorised to give $y=(x+1)(x-5)$

$$
y=0 \text { when } x=-1 \text { or } x=5
$$

The x coordinate of the turning point is the midpoint of the two roots.

$$
x=\frac{-1+5}{2}=2
$$

The y coordinate is $2^{2}-4 \times 2-5=-9$
The coordinates of the turning point are $(2,-9)$

Alternatively you could use the fact that the line of symmetry of the curve with equation $y=a x^{2}+b x+c$ is $x=-\frac{b}{2 a}$

