Core Pure 2 Volumes of Revolution

A curve is defined parametrically by the equations $x=\tan \theta$ and $y=\sec ^{3} \theta, \quad 0 \leq \theta<\frac{\pi}{2}$.
The region R bounded by the curve, the y axis and the line $y=8$ is rotated through 2π radians about the y axis. Find the volume of the solid of revolution formed.

The curve intersect the y axis when $\tan \theta=0$.

$$
\tan \theta=0 \Rightarrow \theta=0 \Rightarrow y=1
$$

When $y=8, \cos \theta=\frac{1}{2}$ and $\theta=\frac{\pi}{3}$

$$
\frac{d y}{d \theta}=3 \sec ^{3} \theta \tan \theta
$$

The required volume is

$$
\begin{aligned}
& \pi \int_{1}^{8} x^{2} d y=3 \pi \int_{0}^{\frac{\pi}{3}} \tan ^{3} \theta \sec ^{3} \theta d \theta \\
& =3 \pi \int_{0}^{\frac{\pi}{3}}\left(\sec ^{2} \theta-1\right) \tan \theta \sec ^{3} \theta d \theta \\
& =3 \pi \int_{0}^{\frac{\pi}{3}} \sec ^{5} \theta \tan \theta-\sec ^{3} \theta \tan \theta d \theta \\
& =3 \pi\left[\frac{1}{5} \sec ^{5} \theta-\frac{1}{3} \sec ^{3} \theta\right]_{0}^{\frac{\pi}{3}} \\
& =3 \pi\left(\frac{32}{5}-\frac{8}{3}\right)-3 \pi\left(\frac{1}{5}-\frac{1}{3}\right) \\
& =\frac{58 \pi}{5}
\end{aligned}
$$

