The shaded region shown below formed by the line with equation $y=2 x-1$ the curve with equation $y=2 x-x^{3}$ and the x axis is rotated 2π radians about the x axis. Find the volume of the solid formed.

The line and curve intersect where $2 x-x^{3}=2 x-1$. That is where $x=1$ and $y=1$.
The line intersects the x axis at $x=\frac{1}{2}$.
The volume can be found by subtracting the volume of a cone from the appropriate integral.

$$
\begin{aligned}
& V=\pi \int_{0}^{1}\left(2 x-x^{3}\right)^{2} d x-\frac{1}{3} \pi \times 1^{2} \times \frac{1}{2} \\
&=\pi\left(\int_{0}^{1} 4 x^{2}-4 x^{4}+x^{6} d x-\frac{1}{6}\right) \\
&=\pi\left(\left[\frac{4}{3} x^{3}-\frac{4}{5} x^{5}+\frac{1}{7} x^{7}\right]_{0}^{1}-\frac{1}{6}\right) \\
&=\pi\left(\frac{4}{3}-\frac{4}{5}+\frac{1}{7}-\frac{1}{6}\right) \\
&=\pi \frac{280-168+30-35}{210} \\
&=\frac{107}{210} \pi
\end{aligned}
$$

Bury Maths Tutor

