Core Pure 1 Vectors

Find the shortest distance between the parallel lines with equations

$$
\boldsymbol{r}=2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}+\lambda(-3 \boldsymbol{i}-4 \boldsymbol{j}+5 \boldsymbol{k}) \text { and } \boldsymbol{r}=\boldsymbol{j}+\boldsymbol{k}+\mu(-3 \boldsymbol{i}-4 \boldsymbol{j}+5 \boldsymbol{k})
$$

Consider the point $(2,-1,1)$ on the first line and a general point $(-3 \mu, 1-4 \mu, 1+5 \mu)$ on the second line. The square of the distance between the points is

$$
\begin{gathered}
(2+3 \mu)^{2}+(-2+4 \mu)^{2}+(5 \mu)^{2}=50 \mu^{2}-4 \mu+8 \\
\frac{d}{d \mu}\left(50 \mu^{2}-4 \mu+8\right)=100 \mu-4 \Rightarrow \\
\mu=\frac{1}{25} \text { when the distance is a minimum. }
\end{gathered}
$$

$$
\text { The minimum distance }=\sqrt{50\left(\frac{1}{25}\right)^{2}-\frac{4}{25}+8}=2.81 \text { (3 s.f.) }
$$

