Core Pure 1 Matrices

Determine the values of the real constants a and b for which there are infinitely many solution to the simultaneous equations

$$
\begin{aligned}
& 2 x+3 y+z=6 \\
& -x+y+2 z=7 \\
& a x+y+4 z=b
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 1 & 2 \\
a & 1 & 4
\end{array}\right|=a\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right|-1\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right|+4\left|\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right|=0 \Rightarrow 5 a-5+20=0 \Rightarrow a=-3
$$

If there are infinitely many solutions the planes form a sheaf (or are all the same plane, which is not the case here as the second equation is not a multiple of the first).

The line where the planes meet must pass through at least one of the planes $x=0, y=0$ or $z=0$.

$$
\begin{gathered}
\text { Trying } x=0 . \\
3 y+z=6 \\
y+2 z=7 \\
y+4 z=b \\
\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)\binom{y}{z}=\binom{6}{7} \Rightarrow\binom{y}{z}=\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)\binom{6}{7}=\binom{1}{3} \\
\text { and } b=1+4 \times 3=13 \\
\underline{b}=13
\end{gathered} \text { If necessary you could consider } y=0 \text { or } z=0 . ~ \begin{gathered}
\text { Bury Maths Tutor }
\end{gathered}
$$

