The points A, B, C and D are four consecutive vertices of a regular polygon. If $\frac{1}{AB} = \frac{1}{AC} + \frac{1}{AD}$ how many sides must the polygon have?

Let AB=1, AC= α , AD= β and AE= γ .

A line from a vertex to the next vertex but one has length α , a line from a vertex to the next vertex but two has length β and so on.

If
$$\frac{1}{AB} = \frac{1}{AC} + \frac{1}{AD}$$
 then $1 = \frac{1}{\alpha} + \frac{1}{\beta}$ and so $\alpha\beta = \alpha + \beta$.

By Ptolemy's theorem, applied to quadrilateral ABCE, $\alpha\beta = \alpha + \gamma$ and so $\beta = \gamma$.

A line from a vertex to the next vertex but two is equal in length to a line from a vertex to the next vertex but three. In the diagram, BE=AE and so the polygon has two further vertices.

The polygon has seven sides.

burymathstutor.co.uk