An A level Maths Question

Consider the parabolas with equations $y=-x^{2}-x+7$ and $y=x^{2}-9 x+19$.

Find the point of intersection of the two straight lines that are tangents to both parabolas.
Find the equations of the tangents.

The required point is the centre of a rotation that maps one parabola onto the other.
This is the midpoint of the line segment between the turning points.
The line of symmetry of a parabola with equation $y=a x^{2}+b x+c$ is $x=-\frac{b}{2 a}$ so the turning points are $\left(-\frac{1}{2},-\left(-\frac{1}{2}\right)^{2}+\frac{1}{2}+7\right)$ and $\left(\frac{9}{2},\left(\frac{9}{2}\right)^{2}-\frac{81}{2}+19\right)$ and the midpoint is $\left(\frac{-\frac{1}{2}+\frac{9}{2}}{2}, \frac{7-1}{2}\right)$.

The tangents both pass through the point $(2,3)$.

$$
\text { For the second parabola } \frac{d y}{d x}=2 x-9
$$

At the point $\left(a, a^{2}-9 a+19\right)$ where a tangent meets this parabola the gradient is $2 a-9$.

$$
\begin{gathered}
2 a-9=\frac{a^{2}-9 a+19-3}{a-2} \Rightarrow \\
a^{2}-9 a+16=(2 a-9)(a-2) \Rightarrow \\
a^{2}-4 a+2=0 \Rightarrow a=2 \pm \sqrt{2}
\end{gathered}
$$

The gradients are $2(2 \pm \sqrt{2})-9=-5 \pm 2 \sqrt{2}$
The equations of the tangents are $y-3=(-5 \pm 2 \sqrt{2})(x-2)$.

