OCR Additional Maths Exam Questions - Algebra

10 John and Paul are carrying out an experiment.

The table shows their results for *x* and *y*.

x	0	2	3	4
у	4	0	0.25	0

Paul proposes that the relationship should be modelled by y = k(x-2)(x-4). This is shown in Fig. 10.

(i) Find the value of k for which the points $(0, 4)$, $(2, 0)$ and $(4, 0)$ satisfy this equation.	[2]
John proposes a different model, using $y = c(x-2)^2(x-4)$.	
(ii) Find the value of c for which the points (0, 4), (2, 0) and (4, 0) satisfy this equation.	[2]
(iii) Which is the better model for John and Paul's results? Give a reason for your answer.	[2]

- 13 Ali and Beth make components in a factory. Ali works faster than Beth and makes 3 more components per hour. As a result he takes 2 hours less time than Beth to make 72 components.
 - Let t hours be the time that Ali takes to make 72 components.

(i) Write expressions for the numbers of components made per hour by Ali and by Beth.		
(ii) Hence derive the equation $3t(t+2) = 144$.	[5]	

(iii) Solve this equation to find the times that Ali and Beth take to make 72 components. [4]

3 This year John is 4 times as old as his son Paul. In 5 years' time John will be only 3 times as old as Paul.

Let the age of Paul now be x years.

By forming an equation in x and solving it, find Paul's age now. [4]

- 12 Paul walked from Anytown to Nexttown, a distance of 15 km. When he got there he then walked back. His average speed on the return journey was 2 km per hour less than on the outward journey.
 - Let Paul's average speed on the outward journey be $x \text{ km hr}^{-1}$.
 - (i) Write down an expression for the time, in hours, taken for the whole journey. [2]

The time taken by Paul for the whole journey was 6 hours.

(ii) Use your expression in (i) to form an equation in x and show that it simplifies to

$$x^2 - 7x + 5 = 0.$$
 [4]

[3]

[2]

(iii) Solve this equation to find Paul's average speed on the outward journey.

- (iv) Find the difference in time between the outward and return journeys. Give your answer to the nearest minute.
 [3]
- 6 You are given that *n* is a positive integer and (n-1), n, (n+1) are three consecutive integers.

In each of the following cases form an equation in n and solve it.

- (i) The three integers add up to 99.
- (ii) When the product of the first integer and third integer is added to 5 times the second integer the sum is 203.
- **10** Simon and Gavin drive a distance of 140 km along a motorway, both at constant speed. Simon drives at 5 km per hour faster than Gavin.

Let Gavin's speed be v km per hour.

(i) Write down expressions in terms of v for the times, in hours, taken by Gavin and Simon. [2]

Simon completes the journey in 15 minutes less than Gavin.

(ii) Explain why $\frac{140}{v} - \frac{140}{v+5} = \frac{1}{4}$ and show that this equation reduces to the equation

$$v^2 + 5v - 2800 = 0.$$
 [5]

(iii) Solve this equation to find v and hence find the times taken by Simon and Gavin. Give your answers correct to the nearest minute. [5]

9 (i) Find the values of the constants *a* and *b* such that, for all values of *x*

$$x^{2} + 8x + 19 = (x + a)^{2} + b.$$
 [3]

(ii) Hence state the least value of $x^2 + 8x + 19$ and the value of x at which this occurs. [2]

(iii) Write down the greatest value of
$$\frac{1}{x^2 + 8x + 19}$$
. [1]